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A B S T R A C T

The contact between rough surfaces with adhesion is an extremely difficult problem, and the approximation of
the DMT theory (to neglect deformations due to attractive forces), originally developed for spherical contact of
very small radius, is receiving some new interest. The DMT approximation leads to extremely large
overestimations of the adhesive forces in the case of spherical contact, except at pull-off. For cylindrical
contact, the opposite trend is found for larger contact areas. These findings suggest some caution in solving
rough contacts with DMT models, unless the Tabor parameter is really low. Further approximate models like
that of Pastewka & Robbins’ may be explained to work only due to a coincidence of error cancellation in their
range of parameters.

1. Introduction

The Derjaguin-Muller-Toporov (DMT) theory [5,10,11], for the
contact of elastic spheres with adhesion, has a long history. After
Bradley [1] and Derjaguin [4] obtained the adhesive force between two
rigid spheres, equal to πRw2 , where w is the work of adhesion, and R is
the radius of the sphere, JKR [13] developed a theory for elastic
spheres, assuming adhesive forces occur entirely within the contact
area, obtaining 3/4 of the Bradley pull-off value, and hence the
independence on the elastic modulus raised a long debate about the
a comparison of the pull-off prefactor.

As the main attention in the diatribe between JKR and DMT was
limited to the pull-off value, it is often believed that DMT is the limit for
Tabor parameter [20].
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where rΔ is the range of attraction of adhesive forces, close to atomic
distance, and E* the plane strain elastic modulus. Also, we have
introduced the length l w E= / *a as an alternative measure of adhesion,
and σth is the theoretical strength of the material. Now, while it is true
that DMT predicts the Bradley result for the force at pull-off also for
elastic spheres, the DMT theories have been much less compared with
exact results, when considering the entire load-displacement curves. In
both DMT methods,

• the attraction forces act exclusively outside the contact, and

• the repulsive forces only are responsible for deformation.

Then, in the DMT “force method”

• the force of adhesion can be simply obtained by integrating,
according to Derjaguin's approximation, the forces of facing ele-
ments outside of the contact, separated by a gap which is given by
Hertz theory.

We shall concentrate on the latter (force) method, which is what is
commonly used when DMT approximation is considered in the
generalized context of rough contact (see [19]). In one looks at the
force of adhesion not at pull-off, it decreases from πRw2 to πRw, in the
“thermodynamic method”1 while it increases in the “force method”, as
shown by [11], and Pashley [12]. Pashley [12] in particular notices that
in the force method, the adhesive force should be always larger than
πRw2 , the value obtained for a truncated rigid sphere independently on
the contact radius, as the Hertzian profile is closer to the flat surface
than the rigid spherical profile.

Maugis [14], in his Maugis-Dugdale analysis (which does not make
the DMT approximations) called the low μ end the “DMT theory”,
which in fact is now the version most commonly associated with DMT,
and sometimes called DMT-M. In this version, the attractive forces are
constant, and equal to the pull-off value, πRw2 . This is indeed what
comes out from DMT theory, but only in the limit of μ = 0: therefore,
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1 In the “thermodynamic method”, the force is computed by the rate of change of surface energy as the sphere is pressed with approach α, i.e. dW dα/s . It turns out that the

“thermodynamic” method tends to give opposite error with respect to the “force method”, and it is also more complicated to use, so it has not received much attention.
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DMT is exact only in this limit case, and for any finite value of μ, DMT
theories give an error which we shall estimate in fact in details in the
present paper as a function of the Tabor parameter, since the previous
estimates of [11], and Pashley [12] do not clarify clearly the role of
Tabor parameter. Greenwood [7] also has discussed more details of the
DMT theory in the limit μ → 0.

But we shall not limit ourselves to the spherical contact case, since
this case has been given already much attention, and is only one special
case. The DMT approximation is gaining relevance more recently
again, in the context of rough contact, where there is a lot of interest
in simplifying the problem since the JKR assumption leads to very
complicated and hysteretic behaviour, which so far, has not been
included in a framework of any theory, despite some attempts [2,18].
Moreover, as roughness at the small scales seems to point to low values
of Tabor parameter, the “almost rigid” behaviour has some funda-
mental interest. Persson & Scaraggi [19] have indeed attempted using
the DMT approximations using the Persson's theory for adhesionless
contact, and seemed to find some reasonable accuracy at least for the
range of parameters they observed. Also, Pastewka & Robbins [17] PR
in the following make some scaling predictions which seem to fit well
some limited range of their extensive full numerical simulations
involving atomistics rough solids. We made a first attempt to discuss
PR findings in Ciavarella [3] where we noticed that, if PR were
concerned with spherical contact, using the DMT approximation with
the additional simplification of using only the asymptotic first term in
the expansion of the gap outside the Hertzian contacts, they would find
easily large errors. But one limit to this estimate is that we assumed
circular contact, whereas PR calculation shows more like 2D fractal
contact area, perhaps closer to very elongated contacts like in 2D
cylindrical contact—indeed, as we will discuss below, they find a
characteristic diameter of the contact independent on load, and load
only affects the elongation of the contact area. Therefore, in the present
note we develop a simple 2D line contact DMT model, we give more
details about the DMT limit for the sphere, and make further
comparisons with the DMT rough contact results.

2. A 2D DMT-Maugis line contact model

For 2D contact with “repulsive” diameter d a= 2rep , the full form of
the gap outside the contact is
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whose first term in the series expansion near c=a is
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3/2, is used in the PR version of DMT method, as
commented in [3], and in the later paragraph. We shall assume for the
potential, a Maugis simple law. This will permit a direct comparison
with the “exact” Maugis solution including deformations induced by
the adhesive stresses, given by Baney and Hui (1997) Morrow and
Lovell [15] and Johnson and Greenwood [9], whereas Jin et al. [8] give
a double Hertz solution which show that results will not differ much
with those with other choices of potential.

The pull-off force is not a simple multiple of Rw as with circular
contacts, but varies from P Rσ w= 8rigid th to
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We define the following non-dimensional contact radius and load
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and accordingly the Hertz and JKR limits are found as [9].

P a* = *Hertz
2 (6)

P a a P a* = * − 2 * = * − 2 *JKR Hertz
2 (7)

whereas the Maugis-Dugdale model shows a smooth transition be-
tween the Hertz and JKR limit — unlike the 3D case, where there is a
transition from Bradley rigid to JKR model. Notice that the rigid limit
is subtle: while there is a tendency to the Hertz regime, the actual pull-
off in rigid limit is not zero.

Moving to a DMT force method estimate, setting the gap to rΔ gives
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Using the asymptotic term, the lateral distance defining the size of
attractive region (which is composed of two strips of size datt) is
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and when contact radius is small, we require a correction from the

solution of (8), β= − 1 =d
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att att asym, . As we are using the Maugis
potential, the attractive load is therefore simply the product of the
theoretical strength and the area of the adhesive strips,
P d= 2DMT att att

w
r, Δ . Using (9), the attractive load is obtained as
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Using ((4), (5)) and Tabor parameter (1),
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The results of the DMT theory are presented in Fig. 1a (dashed
lines) for μ = 0.05, 0.25, 1, 5, together with the Maugis solution of
Johnson and Greenwood [9] which we take as reference as “exact”. In
Fig. 1b, we compare the JG Maugis solution with the further
approximation of taking only the first term in the gap profile, which
clearly leads to serious errors even at low Tabor parameter. We shall
explain why in the PR use of this further approximation, the error was
probably balanced by another approximation.

It is clear that the DMT theory gives a reasonable result only for
μ < 0.05 as at μ = 0.25, the error is already significant, of the order of
20% at pull-off. Errors become large at μ > 1, particularly at pull-off, as
larger than 100%. This is clearer from Fig. 2, where the pull-off values
are plotted.

3. The spherical DMT model

As this case is classical, DMT has been compared with JKR and
other models in a large number of papers. However, the comparison is
mostly done for the value at pull-off, where of course the DMT model
gives the correct Bradley result for μ = 0: only perhaps [11], Pashley
[12], and Greenwood [7] discuss more details of DMT at compressions
larger than zero, and even they, do not fully clarify the error as a
function of Tabor parameter.

We shall assume for the potential, a Maugis simple law, consistently
to the line contact of the previous paragraph. We have already
discussed a further simplified form of this model in [3] inspired by
PR paper [17], namely using the first term asymptotic form of the gap
function outside of the contact, and of computing the area of attraction
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