
A new era in scientific computing: Domain decomposition methods in hybrid
CPU–GPU architectures

M. Papadrakakis, G. Stavroulakis, A. Karatarakis ⇑
Institute of Structural Analysis and Antiseismic Research, National Technical University of Athens, Zografou Campus, Athens 15780, Greece

a r t i c l e i n f o

Article history:
Received 14 December 2010
Received in revised form 12 January 2011
Accepted 14 January 2011
Available online 19 January 2011

Keywords:
Hybrid computing
Multi-core processing
Many-core processing
Graphics processing units
Domain decomposition methods
FETI method

a b s t r a c t

Recent advances in graphics processing units (GPUs) technology open a new era in high performance
computing. Applications of GPUs to scientific computations are attracting a lot of attention due to their
low cost in conjunction with their inherently remarkable performance features and the recently
enhanced computational precision and improved programming tools. Domain decomposition methods
(DDM) constitute today an important category of methods for the solution of highly demanding problems
in simulation-based applied science and engineering. Among them, dual domain decomposition methods
have been successfully applied in a variety of problems in both sequential as well as in parallel/distrib-
uted processing systems. In this work, we demonstrate the implementation of the FETI method to a
hybrid CPU–GPU computing environment. Parametric tests on implicit finite element structural mechan-
ics benchmark problems revealed the tremendous potential of this type of hybrid computing environ-
ment as a result of the full exploitation of multi-core CPU hardware resources and the intrinsic
software and hardware features of the GPUs as well as the numerical properties of the solution method.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In scientific computing, there is a constant need for solving new
and highly computationally demanding problems with increased
accuracy and enhanced numerical performance. In simulation-
based applied science and engineering, there have been consider-
able improvements in sparse matrix solution algorithms as well
as in domain decomposition methods to mitigate execution bottle-
necks, thus leading to faster calculation times and reduced mem-
ory requirements for the solution of increasingly larger problems.
To further increase the speed of their applications, scientists have
also relied on advances in hardware and utilization of expensive
specialized computing systems with parallel and/or distributed
processing capabilities, as well as clusters of interconnected work-
stations. Moreover, since power density issues limit the increase of
the clock frequency, manufacturers have turned to adding more
cores to their processors. However, these advancements pose a
challenge to software developers since sequential codes run on
one of the cores and do not take advantage of the full processing
capabilities. Parallel codes do not have this limitation, so incentive
for their further development has increased, especially since they

have the potential for exploiting the processing power of the
graphics processing units (GPUs).

Driven by the demands of the gaming industry, graphics hard-
ware has substantially evolved over the years with remarkable
floating point arithmetic performance. These processing capabili-
ties motivated the utilization of graphics hardware for general pur-
pose applications, eventually leading to their initial use for non-
graphic operations in 1999. In the early years, these operations
had to be programmed indirectly, by mapping them to graphic
manipulations and using graphic libraries such as openGL and Di-
rectX. This approach of solving general purpose problems is known
as general purpose computing on GPUs (GPGPU). Despite the cum-
bersome programming, it was soon apparent that the GPUs’ poten-
tial and capabilities could be utilized for accelerating arithmetic
operations, especially since they have considerably lower cost than
current supercomputers or workstation clusters.

GPU programming was greatly facilitated with the initial re-
lease of the CUDA-SDK [1–3] in 2007, which resulted in a rapid
development of GPU computing and the appearance of GPU-pow-
ered clusters on the Top500 supercomputers [4]. CUDA, which
stands for ‘‘compute unified device architecture’’, is a parallel com-
puting architecture developed by NVIDIA. CUDA gives developers
direct access to the virtual instruction set and memory of the par-
allel computational elements in CUDA GPUs. Using CUDA, the lat-
est NVIDIA GPUs become easily accessible for general-purpose
applications by eliminating the need for special casting. Recently,

0045-7825/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2011.01.013

⇑ Corresponding author.
E-mail addresses: mpapadra@central.ntua.gr (M. Papadrakakis), stavroulakis@

nessos.gr (G. Stavroulakis), alex@karatarakis.com (A. Karatarakis).

Comput. Methods Appl. Mech. Engrg. 200 (2011) 1490–1508

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2011.01.013
mailto:mpapadra@central.ntua.gr
mailto:stavroulakis@ nessos.gr
mailto:stavroulakis@ nessos.gr
mailto:alex@karatarakis.com
http://dx.doi.org/10.1016/j.cma.2011.01.013
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


openCL has been released as an open industry standard to facilitate
portability and vendor-independence, targeting heterogeneous
platforms consisting of CPUs, GPUs as well as other types of proces-
sors [5]. Unlike CPUs, GPUs have an inherent parallel throughput
architecture that focuses on executing many concurrent threads
slowly, rather than executing a single thread very fast. Massive
hardware multithreading aims to overcome latencies that inevita-
bly derive from device communication. A comparison of the cur-
rent GPU architecture as well as potential future GPU and
modern multi-core processor architecture is provided in [6].

Work pertaining to GPUs has extended to a large variety of
applications even before CUDA made their use easier. Non-linear
finite element implementations for surgical simulation can be
found in [7] with GPGPU and in [8] with CUDA. Engineering appli-
cations in the field of fluid mechanics [9–12], molecular dynamics
[13,14], topology optimization [15], wave propagation [16], Helm-
holtz problems with the boundary element method [17], have been
recently reported on a variety of GPU platforms using explicit com-
putational algorithms. Linear algebra applications have also been a
topic of scientific interest for GPU implementations. A thorough
analysis of algorithmic performance of basic linear algebra opera-
tions can be found in [18]. Performance of iterative solvers is ana-
lyzed in [19], while a parametric study of the PCG solver is
performed on multi-GPU CUDA clusters in [20,21]. A hybrid CPU–
GPU implementation of dense linear algebra algorithms is reported
in [22].

It should be noted that all implementations prior to CUDA 1.3
are performed in single-precision, since support for double-preci-
sion floating point operation is added on CUDA 1.3. This has caused
some misinterpretations in a number of published comparisons
between the GPU and the CPU, usually in favor of the GPU. How-
ever, GPUs were (and still are) perfectly suitable for mixed-preci-
sion solvers. Performance and accuracy of mixed-precision
iterative and multigrid solvers is thoroughly discussed in [23].

Domain decomposition methods (DDM) constitute today an
important category of methods for the solution of highly demand-
ing problems in simulation-based applied science and engineering.
Among them, dual domain decomposition methods have been suc-
cessfully applied in a variety of problems in both sequential as well
as in parallel/distributed processing systems. In this work, we
demonstrate the implementation of the FETI method to a hybrid
CPU–GPU computing platforms. DDM are generally considered
unsuitable for GPU applications due to their difficulty in exploiting
the full capacity of the fine-grained parallelism of the GPUs. How-
ever, this weakness of DDM is overcome in the proposed imple-
mentation, with customized parallelization routines applied for
every part of the solution algorithm. Parametric tests on implicit fi-
nite element structural mechanics benchmark problems revealed
the tremendous potential of this type of hybrid computing envi-
ronment as a result of the full exploitation of the intrinsic software
and hardware features of the GPUs as well as the numerical prop-
erties of the solution method. We believe that, with the exploita-
tion of the processing capabilities of hybrid CPU–GPU systems in
conjunction with the implementation of efficient domain decom-
position methods, which ensure high hardware utilization and
minimize idle time, a new era in scientific computing with great
social impact is emerging.

The remainder of the paper is organized as follows: For readers
not familiar with CUDA, we briefly explain the programming mod-
el in Section 2. In Section 3, the basic steps of the FETI method are
described, followed in Section 4 by its algorithmic implementation
on a hybrid CPU–GPU workstation. A dynamic load balancing is
proposed in this paper between the heterogeneous workstation
components and is analyzed in Section 5. Finally, in Section 6, a
parametric study is performed on benchmark 3D elasticity prob-
lems and the concluding remarks are summarized in Section 7.

2. Overview of graphics processing units and CUDA
environment

GPUs are parallel devices of the SIMD (single instruction, multi-
ple data) classification, which describes devices with multiple pro-
cessing elements that perform the same operation on multiple data
simultaneously and exploit data level parallelism. Programming in
CUDA is easier than legacy GPGPU, since it only involves learning a
few extensions to C and thus requiring no graphic-specific knowl-
edge. In CUDA programming, the CPU is also referred to as a host
and the GPU is also referred to as a device. The general processing
flow of CUDA programming is depicted in Fig. 1. GPUs have a large
number of streaming processors (SPs) grouped together in stream-
ing multiprocessors (SMPs) (Fig. 2). Each SP has its own arithmetic
units. They can collectively offer significantly more gigaflops than
current high-end CPUs.

2.1. CUDA threads

The GPU applies the same functions on a large number of data.
These data-parallel functions are called kernels. Kernels generate a
large number of threads in order to exploit data parallelism, hence
the single instruction multiple thread (SIMT) paradigm. A thread is
the smallest unit of processing that can be scheduled by an operat-
ing system. It generally results from a forking execution into two or
more concurrently running tasks. Threads in GPUs take very few
clock cycles to generate and schedule due to the GPU’s underlying
hardware support, unlike CPUs where thousands of clock cycles are
required. All threads generated by a kernel define a grid and are or-
ganized in blocks. A grid consists of a number of blocks (all equal in
size), and each block consists of a number of threads (Fig. 3).

There is another type of thread grouping called warps. Warps
are the units of thread scheduling in SMPs. Only one warp can be
executed by a SMP at any given time. The number of threads in a
warp is specific to the particular hardware implementation – it de-
pends on how many threads the available hardware can process at
the same time. The purpose of warps is to ensure high hardware
utilization. For example, if a warp initiates a long-latency operation
and is waiting for results in order to continue, it is put on hold and
another warp is selected for execution in order to avoid having idle
processors while waiting for the operation to complete. When the
long latency operation completes, the original warp will eventually
resume execution. With a sufficient number of warps, the

Fig. 1. CUDA processing flow paradigm. (1) Data transfer to GPU memory. (2) CPU
instructions to GPU. (3) GPU parallel processing. (4) Result transfer to main
memory.

M. Papadrakakis et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1490–1508 1491



Download English Version:

https://daneshyari.com/en/article/498610

Download Persian Version:

https://daneshyari.com/article/498610

Daneshyari.com

https://daneshyari.com/en/article/498610
https://daneshyari.com/article/498610
https://daneshyari.com

