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a b s t r a c t

This paper attempts to unify the analysis of fretting and damage at the edges of different classes of
contact. Specifically edge asymptotes may be applied, in the same form, to both incomplete and to re-
ceding contacts. The benefit of this approach is that experiments carried out on incomplete contacts may
be used to predict the life of a wide range of incomplete contact geometries, and also of receding con-
tacts.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The nucleation of fatigue cracks under conditions of fretting
remains something which is not fully understood and, indeed, the
micromechanics of the process are likely to remain elusive and
also to vary from alloy to alloy. So, although there has been, and
continues to be, a lot of interest in modelling this process, usually
through some form of critical plane analysis, we advocate a wholly
different approach. The basic idea is that a (small) family of local
solutions, centred on the edge of the contact, and which implicitly
includes a lot of information about the local stress field, including
both the stress gradient and polar variation of stress components,
is fitted to the edge of the contact. As will be seen, these solutions
fully describe the contact tractions, extent of slip, slip displace-
ment, and all other relevant information which might have a
bearing on crack nucleation. It follows that, if laboratory tests are
carried out in which the history of these local solutions is well
specified, both the threshold for infinite life (and, in the case of
finite life, the number of cycles taken to nucleate a crack), of a
prototype suffering the same history of local solutions must have
exactly the same life; the micromechanics of what goes on within
the domain of that local solution need not concern us.

Before we can begin the analysis we need to carry out a tax-
onomy of all possible classes of contact which might be found in
any prototype, and, in Fig. 1 we show, in idealised form, the four
basic forms of behaviour which might be experienced. It is

assumed that the components experiencing fretting are made
from metals or alloys, and that the overall loads are such as to
maintain an elastic macroscopic stress state in the material: the
deformation of the components is therefore small and conven-
tional linear elasticity with no significant rotation of material
elements applies. The state of stress varies with a radial coordinate
from the contact edge, s, in a characteristic way. First, Fig. 1a shows
an incomplete contact (in fact a cylinder pressed onto a flat, but
other problems falling into this class include a shallow wedge or,
more practically, the dovetail root of a fan blade root), where both
bodies may, in the neighbourhood of contact, be idealised by a half
plane (or half-space in three dimensions). When half-plane theory
is employed we may show from the properties of singular integral
equations usually employed to solve contact problems [1] that the
contact pressure, ( )p s , must be locally square root bounded, ie.

( ) ∝p s s . A similar kind of contact which is incomplete but which
may not be modelled using half plane theory, such as the pin in an
almost conforming hole (a more practical case of a problem of this
class would be the edge of a turbine blade firtree root in a gas
turbine) is shown in Fig. 1b. It is still the case that locally the
contact edge still behaves as a half plane, and hence the contact
pressure still decays in a square root bounded manner.

We turn, now, to a complete contact such as the one depicted
in Fig. 1c in which an elastic block is pressed into an elastically
similar half-plane (a contact occurring in a gas turbine of this class
is the spline joint between split shafts). Here, there are a number
of possibilities depending on the contact edge behaviour and
whether the contact is locally stuck [2,3] but, in every case, the
contact pressure will vary as ( ) ∝ λ−p s s 1, where λ is an eigenvalue
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of a characteristic equation, parametrically dependent on the local
contact angle and coefficient of friction, but almost invariably

λ< <0 1, so that the contact pressure, moving towards the contact
edge, displays a power order singular characteristic. Fig. 1d depicts
a receding contact. The most commonly occurring cases are in
bolted joints, where the very localised contact pressure beneath
the bolt causes the interface to separate away from the point of
application of the applied force. These will be described in more
detail in a later section, but we note, here, that the contacting
surfaces at the point of separation have a common tangent, and so
locally these are again very similar in behaviour to an incomplete,
half-plane contact, and hence the contact pressure displays square
root bounded characteristics. Lastly, in Fig. 1e we show, in idea-
lised form, the edge of a contact formed by two bodies whose
edges are aligned, so that the location of the contact edge is de-
fined by both bodies simultaneously. Contacts with a common
edge still have a local stress distribution with a characteristic local
polar form [4,5], and the contact pressure is finite and non-zero,
i.e. ( ) ∝p s s0. So, it may be seen that complete contacts and those
having a common edge exhibit a different edge characteristic from
incomplete and receding contacts. We will, in the rest of this pa-
per, restrict ourselves to consideration of contacts displaying
square root bounded contact edge behaviour, and show how
problems of these classes may be treated uniformly if only the
contact edge behaviour, including the presence of local slip, are
needed. This is invariably the case when fretting fatigue arises.

2. Basic solutions

The best way to describe contact edge behaviour is to assume,
for the time being, that the coefficient of friction, f, is sufficiently
high to inhibit all slip. Fig. 2 shows a generic incomplete contact
(which need not be Hertzian). If the contact half-width is a the
symmetric shear traction, ( )q x , induced by the application of a
shear force Q is given by

π
( ) =

− ( )
q x

Q

a x
.

2.12 2

It is rare for contacts to suffer only a net force, and, in most
cases, tensions parallel with the free surfaces will be present. If
that in the upper body is s1 and that in the lower body is s2 an
antisymmetric shear traction distribution is induced given by

σ
( ) = −

− ( )
q x

x

a x4
,

2.2
0

2 2

where σ σ σ= −0 1 2. Notice that these results are independent of the
geometry of the indenter, and that, if we move the origin to a local
one positioned at either edge of the contact, positive inwards,
Fig. 2a, and then expand these expressions by the binomial theo-
rem and take the dominant term, we see that the local shear
traction is given by

( ) =
( )

q s
K

s
,

2.3
T

where

π
σ

= ± +
( )

K
Q

a
a

2 4 2
,

2.4T
0

and the þve sign is taken for the left-hand edge ( → +x a ) and the
�ve sign is taken for the right-hand edge ( → −s a ). These ex-
pressions display the magnitude of the shear stress singularity at
each edge of the contact and show that the application of a dif-
ferential surface tension is additive to the effects of a shear force at
one end of the contact but is subtractive from it at the other. We
turn, now, to the solution for the contact pressure. For incomplete
contacts this may always be written in the form

( ) = ( )p s K s , 2.5N

and so we define the multiplier KN[ ]−FL 5/2 by

= ( )
( )→

K
p s

s
lim .

2.6N
s 0

For simple geometries this may be evaluated analytically so that,
for example, for a Hertzian contact

π
=

( )
K

P

a

8
,

2.7N 3

and for complex profiles where the finite element method is used
the value may be abstracted by conventional numerical
procedures.1 Once the values of K's are known, giving the fully
adhered contact edge response, the effect of friction may easily be
found. This is, of course, loading trajectory dependent and so, here,
we will consider the case where first the normal load is applied,
and subsequently held constant. By using the Ciavarella–Jäger
theorem [7,8] the corrective solution for the shear traction may be
found [9,10], and the size of the slip zone for a monotonically in-
creasing set of loads producing advancing slip is determined. The
steady state (reversing) slip zone size under reversing loading is
also given. This has the result, for the steady state, of a slip zone of
length d, given by

=
Δ

( )
fd

K
K

,
2.8

T

N

where ΔKT is the range of shear stress intensity, and the shear
traction is given by

( ) = = < < ( )q s fK s
K
d

s s d0 2.9N
T

( ) = ( − − ) < ( )q s
K
d

s s d d s, 2.10
T

Fig. 1. Fundamental classification of contacts. (a) Incomplete and non-conformal
contact, (b) incomplete and conformal contact, (c) complete contact, (d) receding
contact, and (e) common edge contact.

1 This is related, we believe, to the quantity, Is, introduced by Montebello [6],
which he refers to as the ‘velocity field’, and we believe that it is defined by the
relationship =∂ ( )

∂ −
p x a

a
Is

a x
, . It may easily be shown to be related to the quantity

=K I2N
s.
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