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A B S T R A C T

It is shown that even small deviations from the ideal Gaussian random roughness case seem to lead to dramatic
increase in adhesion of rough surfaces: this could be due to a finite number of asperities, or to a finite tail in the
height distribution, particularly realistic at low fractal dimensions D, which is the case of most practical interest.
It is emphasized that the assumption of a perfect Gaussian heigth distribution, including infinite tails, may be a
strong one when studying adhesion in rough surfaces.

1. Introduction

The classical model showing why surface roughness even of
extremely tiny amplitude destroys adhesion was due to Fuller and
Tabor [9]. Experiments on rubber spheres pressed against roughened
Perspex flats showed that less than a micrometer of roughness
amplitude reduced the pull-off force of about one order of magnitude
with respect to the values obtained with rubber spheres of size of the
order of 10 mm against the smooth surface. Fuller and Tabor also
explained these results with a generalization of the GW [12] asperity
model to the case with adhesion described with the JKR theory [15].
Among the many strong assumptions made by Fuller and Tabor most
of which are inherited from the GW model, there is the additional idea
to use the analysis for a nominally flat contact with a random
distribution of summits, whose limit behavior is the pull-off of aligned
summits, and not that of a smooth sphere. In these respects, it is quite
surprising that agreement between model and theory was satisfactory.
But clearly Fuller and Tabor did not push their experiments to further
reduction of adhesion: it is instructive to estimate the number of
summits involved in their experiments. If we use the quantities
reported in their Table1 for the smooth surface experiments, it appears
that the contact area at pull-off was of the order of a little less than
1 mm2, and the density of summits of the order of few hundreds/one
thousand per mm2: hence, we can estimate an order of about 1000
summits in the nominal contact area. In principle, they could be able to
measure a corresponding reduction of 3 orders of magnitude in
adhesion, up to just a single asperity in contact at pull-off.

Independently on the number of summits, the tails of a distribution

are not necessarily Gaussian, although Central Limit Theorem (CLT)
suggests a process defined by the sum of many independent compo-
nents (but nominally of same “size”! ) to slowly tend to be Gaussian.
However, especially in the multiscale surfaces (“fractal” or “self-affine”
in a broad range of wavelength), even if roughness is present from
macroscale down to atomic scale, the longest wavelengths inevitably
dominates the height distribution,1 especially at low fractal dimen-
sions, which is by far the case of most common practical interest [23].
Assuming the presence of roll-off in the PSD (Power Spectrum Density)
does lead eventually to a much more Gaussian and ergodic process, but
not always this is used in simulations (Pastewka and Robbins [21], PR
in the following, assume for example very little roll-off, as far as we can
judge), and it is also not always measured in experiments. Persson et al.
[23] have an extensive set of measurements of rough surfaces, but even
with the presence of roll-off, the tails do not extend very far — the
question therefore remains open if real surfaces should strictly be
assumed Gaussian. Without roll-off, single realization of a surface may
look close to a uniform distribution of asperity heights, see eg. Fig. 3 of
Ciavarella and Afferrante [7]. While this has very limited effect in the
contact without adhesion [27] except in limit cases like in the presence
of wear [5], this has not been investigated in the context of adhesion, as
far as we know.

In the Fuller and Tabor asperity model, it is the competition
between the compressive and tensile loads which gives eventually the
pull-off. To illustrate the model, an adhesion parameter is introduced
(Δc in their paper) which depends on the ratio between the separation
at pull-off in the JKR model, δc, and the rms amplitude of summit
heights hrms
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1 Notice that a single sinusoid has a distribution which is even singular at the highest and lowest point.
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where w is work of adhesion of the surface pair, E* the plane strain
elastic modulus of the contacting materials and R the radius of
summits.

We study the Fuller and Tabor model in a discretized version, in
order to assess the influence of a finite number of summits, of the non-
Gaussian distribution, first in the simple model of a random distribu-
tion of summit heights, and then with numerical experiments with self-
affine random surfaces generated in principle to be Gaussian.

2. Fuller and tabor (FT) model

The original Fuller and Tabor [9] model introduces adhesion in the
Greenwood-Williamson [12] model of a set of independent, identical,
spherical summits, using instead of the Hertz equation, those obtained
by Johnson et al. [15], which are relevant to large, compliant, spheres,
whereas for small summits it is perhaps more appropriate to introduce
the DMT model [8], specifically in the form presented by Maugis [18].
The DMT theory doesn't change the Hertzian area vs. remote approach
δ relationship. The area of contact is intended to be the “repulsive” part
where the Hertzian pressures act, whereas adhesive forces are only
outside the contact area and depend on the gap produced by the
compressive forces. This results in a total force [18] sum of a Hertzian
component and a term independent on remote approach (which also
gives the pull-off force F πwR= 2c when δ = 0, although we do not
change the definition of θ in (1)), resulting in
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where R is the radius of the summit.
Integrating over a distribution of identical summits with a Gaussian

height distribution, one obtains area-separation and force-separation
as follows
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where ∫I t dξ ξ t ξ( ) = ( − ) exp(− /2)n t
n∞ 2 , hrms is rms amplitude of sum-

mit heights, t s h= / rms is dimensionless separation, Dsum the number of
summits per unit area (density).

In order to derive reasonable estimates of the quantities involved in
an asperity model, there is a well established random process theory for
Gaussian surfaces [20], which gives density of “summits” (the aspe-
rities), their mean radius, and the rms amplitude of their heights as
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where m's and m4 are the moments of the PSD (Power Spectrum
Density) of the surface roughness (here, the moments are relative to the
profile spectrum), or else the variance of surface heights, slopes and
curvatures, and where α is the Nayak bandwidth parameter defined as
α m m m= /0 4 2

2, ranging from 1.5 (narrow-band) to ∞. We are confusing
here the summit rms amplitude with hrms, with simplicity of notation,
since the two quantities are very close anyway.

Notice the quantity appearing in the area equation of the Fuller and
Tabor model (3), can be estimated as
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and was considered to be constant and equal to 0.05 or 0.1, when
measuring instruments did not permit to explore a wide spectrum.

Turning back to the Fuller and Tabor model, the load-separation as

obtained from (4), is shown in Fig. 1 for different values of the
adhesion parameter θ (higher θ corresponds obviously to the curves
more in the tensile region). According to the definition of “stickiness”
given by PR, here the transition to this regime seems to occur (reading
it at realistically small contact areas, where one can use numerical
codes with accuracy) at a value of θ between 0.3 and 0.4.

It is clear from Fig. 1 that increasing the adhesion parameter leads
to a minimum (pull-off) at increasingly low separations. However, the
asperity models give a poor description of the geometry of random
surfaces when, say, t < 1 (see [11]) if the bandwidth parameter α is
large (α > 20), which means that the region of validity is a priori rather
limited in terms of θ. It is unclear how strong this limitation is, as there
is presently no estimate on the order of error made by the asperity
model, with the exception of the PR, which we shall use indeed for
comparative purposes.

When θ is very high, the Fuller and Tabor model predicts the pull-
off of a set of Nasp independent asperities. On the contrary, if full
contact is established or a smooth contact is considered, pull-off may
occur only at the theoretical adhesive van der Waals strength, unless we
postulate the existence of flaws at the interface in analogy, for example,
to Johnson [16] or Afferrante et al. [1]. As remarked by Fuller and
Tabor, when using for the rms amplitude a value of the order of atomic
spacing, the model surprisingly shows indeed this order of magnitude
of adhesion, and we shall discuss this limit in details when comparing
with PR. Furthermore, for high adhesion parameter, it has been
suggested that roughness may possibly increase stickiness rather than
decrease it [10] and this could be in conflict with asperity models. This
effect has been found clearly in very special regular surfaces in the JKR
regime having either axisymmetric or 1D regular roughness [13], but is
much less pronounced for less regular ones [14] — this, incidentally,
means that a purely 1D random roughness could behave extremely
differently form a 2D one, and results specific to 1D profiles [4] could
trigger this mechanisms and should not be translated to a true 2D
roughness. Notice Carbone et al. [4] predicts a possible contribution to
adhesion due to roughness-induced increase of the true contact area.
Also the finite dimensions and boundary configurations of the contact-
ing bodies can play a crucial role in affecting stickiness [19].

On the other hand, when θ is very low, the predicted pull-off occurs
at very high separations, where one may also doubt that the small
number of asperities in contact will follow the Gaussian distribution.

In order to shed light into this problem, we shall investigate distribu-
tions of asperities generated independently on any actual random process
surface, to discuss two effects in a simple configuration: the finite number
of asperities, and the absence of tails in the distribution. Since both lead to
very significant deviations from the ideal Fuller-Tabor model, we then
investigate self-affine nominally “Gaussian” surfaces.

Fig. 1. The dimensionless load F N F/( )asp c as a function of the normalized separation

s h/ rms for Gaussian distribution of asperities heights. Notice the force is normalized with

respect to the product between the pull-off force of a single asperity and the total number
of asperities. Results are given by using in the FT model the DMT-Maugis constitutive
law for the single asperity. Plots are presented for different values of the adhesive
parameter θ = 0.1, 0.2, 0.3, 0.4 and 0.5, which is higher for the curves more in the tensile

(negative) load region.
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