
Author's Accepted Manuscript

Finite element analysis of fretting fatigue under out of phase loading conditions

Nadeem Ali Bhatti, Magd Abdel Wahab

PII: S0301-679X(17)30033-6

DOI: http://dx.doi.org/10.1016/j.triboint.2017.01.022

Reference: JTRI4562

To appear in: Tribiology International

Received date: 18 November 2016 Revised date: 13 January 2017 Accepted date: 18 January 2017

Cite this article as: Nadeem Ali Bhatti and Magd Abdel Wahab, Finite element analysis of fretting fatigue under out of phase loading conditions, *Tribiolog International*, http://dx.doi.org/10.1016/j.triboint.2017.01.022

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Finite element analysis of fretting fatigue under out of phase loading conditions

Nadeem Ali Bhatti¹ and Magd Abdel Wahab^{2,3,4,*}

¹Department of Electrical Energy, Systems and Automation, Faculty of Engineering and Architecture, Ghent University

²Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam ³Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam ⁴Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 903, Zwijnaarde B-9052, Belgium

magd.abdelwahab@tdt.edu.vn;

magd.abdelwahab@ugent.be

* Correspondence:

Abstract:

Fretting fatigue is a complex phenomenon involving various factors, such as slip amplitude, coefficient of friction, shear load and loading phase difference. In this study, three numerical models are used to model the effect of both in phase and out of phase loading on contact stresses and damage initiation locations. Three phase difference angles are considered, i.e. 0°, 90° and 180°, for this purpose. It is observed that phase difference affects the shear traction and tensile stress profiles at the contact interface, whereas no significant effect is observed on convergence efficiency. It is also shown that, due to increase of stick zone width, the convergence is slower during the unloading step than during the loading step. SWT parameter and Ruiz parameter are adopted as two crack initiation criteria in order to investigate their performance in case of out of phase loading. The critical locations predicted by both parameters have shown good agreement with experimental results from literature. In addition, it is observed that phase difference significantly affects the damage initiation location.

Keywords: Fretting fatigue; damage initiation location; out of phase loading; finite element analysis.

Nomenclature

F1 Damage parameter

F2 Initiation parameter

P The normal load

 σ_A Applied axial stress

 σ_R Reaction stress

Q Tangential load

v Poisson's ratio

E Modulus of elasticity

R Radius of pad

MPC Multi point constraint

 φ Phase difference

 R_{σ} Stress ratio

 R_O Tangential load ratio

Download English Version:

https://daneshyari.com/en/article/4986193

Download Persian Version:

https://daneshyari.com/article/4986193

Daneshyari.com