
Author's Accepted Manuscript

Study of the tribocorrosion behaviour of Ti6Al4V – HA biocomposites

M. Buciumeanu, A. Araujo, O. Carvalho, G. Miranda, J.C.M. Souza, F.S. Silva, B. Henriques

PII: S0301-679X(16)30450-9

DOI: http://dx.doi.org/10.1016/j.triboint.2016.11.029

Reference: JTRI4469

To appear in: Tribiology International

Received date: 8 September 2016 Revised date: 9 November 2016 Accepted date: 15 November 2016

Cite this article as: M. Buciumeanu, A. Araujo, O. Carvalho, G. Miranda, J.C.M Souza, F.S. Silva and B. Henriques, Study of the tribocorrosion behaviour o Ti6Al4V — HA biocomposites, *Tribiology International* http://dx.doi.org/10.1016/j.triboint.2016.11.029

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Study of the tribocorrosion behaviour of Ti6Al4V – HA biocomposites

M. Buciumeanu^{1*}, A. Araujo², O. Carvalho², G. Miranda², J.C.M. Souza³, F.S. Silva², B. Henriques^{2,4}

¹Cross–Border Faculty of Humanities, Economics and Engineering, "Dunărea de Jos" University of Galați, Domnească 47, 800008 Galați, Romania

²MEMS-UMinho, Center for MicroelectromechanicalSystems, Universityof Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

³Center for Research on Dental Implants (CEPID), Department of Dentistry (ODT), Universidade Federal de Santa Catarina (UFSC), 88040-900, Florianópolis/SC, Brazil.

⁴Laboratory of Ceramic and Composite Materials (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis/SC, Brazil

*Corresponding author at: Tel.: +351917560788; Fax.: +351253516007. mihaela.buciumeanu@ugal.ro

Abstract

This study is concern with tribocorrosion behaviour of Ti6Al4V-HA biocomposites. The Ti6Al4V composites reinforced with different contents of hydroxyapatite (HA) particles (5 to 15%, vol.%) were produced by hot pressing technique. The tribocorrosion tests were performed by using a ball-on-plate configuration in artificial saliva at 37°C. The tests were carried out under open circuit potential (OCP), with a sliding duration of 1800 s, 1N normal load and 1Hz frequency. The open circuit potential and wear mechanisms for all tested biocomposites are presented and discussed. The results suggest that HA plays a relevant role on tribocorrosion behaviour of Ti6Al4V-HA composites. All composites samples presented better wear resistance and also a relatively lower tendency to corrosion with increasing HA content.

Keywords: hydroxyapatite; Ti6Al4V alloy; composites; tribocorrosion.

1. Introduction

Wear and corrosion resistance of biomaterials have been reported to be a primary reason for the failure of an implant [1,2]. Regarding the use as biomaterial (e.g. implant material), titanium and its

Download English Version:

https://daneshyari.com/en/article/4986214

Download Persian Version:

https://daneshyari.com/article/4986214

<u>Daneshyari.com</u>