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A B S T R A C T

This work studies the methods used to extract fractal dimensions from surface profiles and the applicability of
fractals to measured surfaces. The work used generated surfaces to first evaluate these methods, and later
applies the methods to measured surfaces. Two methods for generating surface profiles are used. The fractal
dimension values of all generated profiles are calculated by four methods, then the results are compared. It is
also found that self-similarity occurs at different fractal dimensions for the power spectrum and the
Weierstrass-Mandelbrot generation methods. The analysis indicates that real measured rough surfaces are
not easily represented as perfect fractals as researchers and engineers often assume.

1. Introduction

The study of natural surfaces has been a valuable topic for
centuries. In fact, scientists have extended the study of surfaces to
coastlines on the macro scale [1] and cell surfaces [2] on the micro
scale. Surface characterization is very important to practical applica-
tions: the electrical connectors [3], the mechanical seals [4] and the
articular cartilage [5]. Researchers [6–8] also mentioned that the
roughness of road surfaces will have an impact on the vehicle tires
which will affect fuel economy. When studying surfaces, the method
used to characterize them is very important. Surface characterization
then became a significant technique in studying the surfaces. The
surface characterization of rough surfaces impacts many important
physical phenomena such as sealing, wear, friction and electrical
contact.

During the study of rough surfaces, engineers have created surfaces
by many finishing technologies, such as casting, turning, milling,
grounding, polishing, lapping and so on. It is also found that the
roughness of surfaces can be controlled and improved through the
manufacturing process and machining of the components [9,10], so
that surface fatigue and wear between two surfaces, along with some
other surface phenomena can be controlled. The development of
surface processing technology further indicates the important of sur-
face characterization. Álvar et al. [11] mentioned that machining using
end-milling tools or turning ones can cause regular patterns, the
periodic structures occurring from man-made regular patterns will
affect and be captured by fractal and especially spectral analysis. For
instance, a spectrum of these surfaces should show a high peak or

amplitude on the scale of these features. Therefore, surface character-
ization is also of great economic importance to various industries and
applications.

Initially, only Euclidean geometry was employed for surface
characterization. However, this kind of geometry has many limitations
because it can be difficult to compute the multi-scale roughness of a
real world geometry. Mandelbrot was the first person who pointed out
that the fractal geometry seems much more suitable for describing the
natural world, which is inherently rough on many scales [12].
Mandelbrot also defined a fractal as “a shape made of parts similar
to the whole in some way” [13].

When using the fractal geometry to characterize rough surfaces, the
most important parameter is the fractal dimension, D. It describes the
space occupancy of an object and can be used to quantify the roughness
of an object. Non-fractal Euclidian geometries have integer values for
their fractal dimensions, like a line has a fractal dimension equal to one
(D=1), the fractal dimension of a plane is two (D=2) and a space has
fractal dimension equals to three (D=3). Fractal geometry can work
with objects that are non-Euclidean because they have non-integer
dimensions. The non-integer fractal dimension means an object is ‘in
between’ these geometries due to features or roughness along the
border of the object. For instance, one could envision that a line could
approach the geometry of a plane as its roughness increases to become
very large. Hence, roughness can be said to cause an object to have a
dimension in between these geometries.

Since the fractal dimension is an important and popular parameter
in characterizing fractal rough surfaces, there are many methods to
calculate it or extract it from a surface, like the classic Richardson plot
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[14], the compass method [1,15], [16], the variogram method [17], the
roughness-length method [18], the RMS-COR method [19] and the
power spectral density (PSD) method [17,20]. Note that the variogram
method is the same as the structure function method [21]. In this
paper, the authors picked four different methods (the roughness-length
method, the box-counting method, the variogram method and the
power spectral density method) to calculate the fractal dimension
value. The reason for choosing the roughness-length method and PSD
method is because they are all widely used and very popular for
calculating the fractal dimension. Since the box counting method is
widely used but listed to calculate the fractal dimension of self-similar
profiles, it is also considered. We can also test if this method can be
used in calculating the fractal dimension of self-affine profiles and
measured surfaces that might be self-similar as suggested by Jackson
[22]. As to the variogram method, it is used to a lesser extent, but
suggested by an expert in the field, so the effectiveness of this method
on our profiles is tested.

In the roughness-length method, the relationship between RMS
roughness and the measured window length of the profile is plotted on
a log-log scale. The slope of the plot then can be used to calculate the
fractal dimension. In the box-counting method, the surface profile is
covered by an array of identical boxes, whose size will be changed by a
power of 2 and the number of covered boxes are counted. The fractal
dimension is exactly the slope of the log-log plot between the box size
and box number. For the power spectral density method, the auto-
correlation function (ACF) is calculated first and the FFT algorithm is
then implemented on the ACF to obtain a power spectral density. Note
that the maximum frequency (inverse of the upper wavelength) is used
to normalize the power spectrum values, resulting in power spectral
density (PSD). By taking the logarithm of the power spectral density
equation, the obtained slope is used to calculate the fractal dimension
value. More detailed descriptions of these three methods can be found
in previous work [23]. For the variogram method, a large number of
pairs of points separated by different lateral distances (τ) along the
profile are chosen, then the difference in height between two positions
are calculated (e.g., z values). By calculating the sum of squares of all
the height differences and then computing the average value of the
sum, the fractal dimension can be derived from the log-log plot of the
average values verses distances between the point pairs (τ). According
to [17,24], the expression of the variogram method can be written as:
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where s τ( ) is defined as the variogram, and N τ( ) is the number of point
pairs separated by a distance τ.

Due to the complex structures of actual multi-scale rough surfaces,
many simplified methods are developed to consider multi-scale and
fractal profiles, such as the successive random addition method [25],
the midpoint displacement method [26], the Fourier based filtering
algorithm [27,28] and the Weierstrass-Mandelbrot (W-M) function
method [29,30]. The reason we call them “simplified” methods is just
because these methods use equations to simplify the complex struc-
tures of rough surfaces to simple structures. In this study, the inverse

Fourier transform based on a prescribed Power Spectrum Density
(PSD) method and the Weierstrass-Mandelbrot (W-M) function meth-
od are only considered and used to generate surface. In the inverse
Fourier transform based on a prescribed Power Spectrum Density
(PSD) method (PSD-iFFT), the power spectral density (PSD) is
calculated first [27], then the surface profile is generated from the
PSD. In contrast, the W-M function method generates a fractal profile
by adding non-fractal sinusoidal shapes together [29] as prescribed by
the Weierstrass-Mandelbrot function. The major difference between
these methods is that the PSD-iFFT method generates a surface profile
from a PSD that is an arithmetic series, while the W-M function is a
geometric series. The geometric series has terms that are spaced over
wavelengths logarithmically. The Fourier series is a popular example of
an arithmetic series and is used in this work for the PSD-iFFT.

There are also other methods to characterize the multi-scale
structure of surfaces. According to Jackson [31], the slope of the
asperity aspect ratio (B) versus wavelength (λ) (i.e.dB/dλ) is an
effective parameter for characterizing multi-scale surface structure
and its degree of self-affinity. The asperity aspect ratio (B) indicates
the ratio of the amplitude (Δ) of the multi-scale surface at a scale to the
wavelength (λ) of that scale.

For a perfectly self-similar rough surface, when B is plotted versus
λ, it results in a straight horizontal line, which means no matter how
the scale changes, B is a constant over the scales and the dB/dλ value is
zero. However, for self-affine surfaces, dB/dλ will have a non-zero value
and B will vary linearly as a function of wavelength. Of course, this
methodology assumes that the surface is composed of wavy functions.

The objective of this work is not to promote or demonstrate the use
of fractals, rather, we are analyzing the effectiveness of using fractals to
characterize real surfaces. We are also attempting to answer the
following question: Which methods are the most reliable in extracting
the fractal quantities from a surface profile (i.e. fractal dimension)?
These methods are analyzed by comparing the extracted values to the
known values used to generate ideal fractal surface profiles. Once these
methods are identified, we use them to characterize measured rough
surface profiles and test their effectiveness. We then quantify the self-
affinity of the measured rough surfaces using dB/dλ, and test if the
predicted fractal dimensions are in agreement. From the results of our
analysis, one can choose an appropriate method to calculate the fractal
dimension value of the profile and can also help people to understand
the multi-scale nature of actual measured surfaces.

2. Characterization of generated surface profiles

The objective of this section is aimed at analyzing the effectiveness
of various techniques on extracting the fractal dimensions. This is done
by using the surface generation techniques to create rough surface
profiles with a known fractal dimension. Whether self-similarity occurs
at the same value for the generated surface profiles by these two
methods is also tested.

Nomenclature

B asperity aspect ratio or Fourier series slope
D fractal dimension
G fractal roughness
K wave number
Kr roll-off wavenumbers
Ks upper cutoff wavenumbers
L length of the profile
n fractal scale index

n1 lowest cutoff frequency index
n2 highest cutoff frequency index
Rq root mean square roughness
s sampling resolution
z profile height
τ distance in the variogram method
γ fractal scaling parameter
Δ amplitude
λ wavelength
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