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paper presents a general framework for optimizing stabilization parameters with respect to the minimi-
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and the minimization of a residual-based error estimator, an error indicator, and a functional including
the crosswind derivative of the computed solution. Benefits of the basic approach are demonstrated by
means of numerical results.
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1. Introduction

The numerical solution of challenging problems in various engi-
neering applications is in general not possible with standard meth-
ods that are based, e.g., on central finite differences or the Galerkin
finite element method. More sophisticated schemes become neces-
sary that are designed to tackle the special difficulties of the under-
lying problem.

An example, that will be considered in this paper, are scalar
convection-dominated convection-diffusion equations. Solutions
of these equations exhibit very fine structures, so-called layers,
which cannot be resolved on meshes that are not extremely fine,
at least locally. Standard discretizations lead to solutions that are
globally polluted by large spurious oscillations. In practice, stabi-
lized methods are used. These methods introduce artificial diffu-
sion. The difficulty consists now in defining the correct amount

* Corresponding author at: Weierstrass Institute for Applied Analysis and
Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany.

E-mail addresses: volker.john@wias-berlin.de (V. John), knobloch@karlin.mff.
cuni.cz (P. Knobloch), simona.b.savescu@wias-berlin.de (S.B. Savescu).

1 The work of P. Knobloch was supported in part by the Grant Agency of the
Academy of Sciences of the Czech Republic under the Grant No. IAA100190804, by
the Grant Agency of the Czech Republic under the Grant No. P201/11/1304, and by the
Ministry of Education, Youth and Sports of the Czech Republic in the framework of the
research project MSM 0021620839.

2 The work of S.B. Savescu was supported by the Deutsche Forschungsgemeinschaft
(DFG), Grant No. Jo 329/9-1.

0045-7825/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2011.04.016

of diffusion at the correct positions in the correct directions (aniso-
tropic diffusion) such that numerical solutions with sharp layers
and without spurious oscillations are obtained. A method that is
optimal with respect to all criteria does not exist yet. Many pro-
posed stabilized methods include so-called stabilization parame-
ters. Often, the asymptotic choice of these parameters is known,
e.g., that they should be proportional to the local mesh width.
However, in practice, the proportionality factor has to be chosen.
There is the experience that different choices of such factors might
lead to considerably different numerical solutions. Moreover, the
asymptotic choice of the stabilization parameters is based on glo-
bal stability and convergence analysis. Local features of solutions,
like layers, are not taken into account in this analysis.

We would like to mention a second example that demonstrates
the difficulties of choosing parameters in numerical simulations -
Large Eddy Simulation (LES) of turbulent flows. Turbulent flow
simulations require the use of some turbulence model. An often
used, so-called eddy viscosity model, is the Smagorinsky model
[40]. This model is based on some insight into the physics of turbu-
lent flows and it finally introduces a nonlinear viscosity into the
discrete equations. It is rather easy to implement and very well
understood from the point of view of mathematical analysis [32].
The derivation of the Smagorinsky model is based on some propor-
tionality relations such that at the end a proportionality factor oc-
curs. Experience shows that the use of a constant for this factor
does not lead to good results. Instead, this factor has to be adapted
to the local features of the turbulent flow field. An approach in this
direction is the dynamic Smagorinsky model [12,33]. Despite all
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drawbacks, e.g., see [24], the dynamic Smagorinsky model is one of
the most often used and most successful LES models. Nowadays,
there is another approach to control the influence of the Smagorin-
sky model - Variational Multiscale (VMS) methods. These methods
try to select appropriate scales to which this model is applied
[20,15,25,26]. Turbulent flow simulations are a typical example
where principal forms of models are known but the results ob-
tained with these models depend on the correct setting of param-
eters. There are many more numerical methods that require the
choice of parameters and for which an a posteriori choice would
greatly improve the ability to use them in applications. The a pos-
teriori choice of parameters seems to be a widely open and chal-
lenging task in scientific computing.

The idea of choosing parameters in numerical methods a poste-
riori is not new, the dynamic Smagorinsky model was already
mentioned. In essence, this method computes two (or more) dis-
crete solutions in different ways and the parameter choice is based
on comparing them. This idea was recently carried over to scalar
convection-diffusion equations in [1], based on the work from
[35]. In this approach, the different solutions are computed on
coarser mesh(es). On the coarser meshes, information on the
respective stabilization parameters are derived which are used to
update the stabilization parameters on the fine mesh. A severe
drawback of this approach is that the dimension of the parameter
space is not allowed to exceed the dimension of the respective test
function space. Therefore, the approach cannot be applied to the
optimization of stabilization parameters in discretizations with
first order finite elements as considered in this paper. Moreover,
the methodology seems to be only simple for a few globally con-
stant parameters, which is explicitly not the goal of our approach.
Another method which determines the stabilization parameter on
the basis of two solutions was presented in [36]. In this method,
the residuals and their derivatives are used to compute a charac-
teristic length scale which enters the formula for the stabilization
parameter. The computations of the stabilization parameters in
[36] are restricted to convection-diffusion equations in one dimen-
sion and a generalization to more dimensions is not obvious. A
method for hyperbolic conservation laws in one dimension can
be found in [10]. In this paper, the streamline-diffusion stabiliza-
tion parameter and an adaptively refined grid are computed a pos-
teriori. The adaptive algorithm uses the Dual Weighted Residual
(DWR) approach [2,3] with a backward-in-time dual problem. An
iterative procedure based on equilibrating components of the error
estimator is used to compute the stabilization parameters and the
grids. This method was extended to one-dimensional nonlinear
convection-diffusion-reaction equations in [18].

The present paper considers the Streamline-Upwind Petrov-
Galerkin (SUPG) finite element method for scalar convection-
dominated convection-diffusion equations introduced in [21,4].
Although a number of other stabilized finite element methods have
been developed in the past decades, the SUPG method is still the
standard approach. In essence, this method adds numerical diffu-
sion in streamline direction. The amount of diffusion depends on
local stabilization parameters. There are different formulae for
these parameters whose asymptotics are the same, see [27] for a
discussion of parameter choices. The properties of solutions ob-
tained with the SUPG method are well known: sharp layers at
the correct positions are computed, but non-negligible spurious
oscillations occur in a vicinity of layers. These oscillations make
the use of the SUPG method in applications difficult as they corre-
spond in general to unphysical situations, like negative concentra-
tions. There have been a large number of attempts to improve the
SUPG method in order to get rid of these oscillations while preserv-
ing its good properties. However, none of these so-called Spurious
Oscillations at Layers Diminishing (SOLD) methods turned out to
be entirely successful [27,28].

To improve the solutions obtained with the SUPG method, the
present paper pursues a different approach than the SOLD meth-
ods. It relies on the optimization of the stabilization parameter,
however, in contrast to [1,10,18,36,35], the parameter optimiza-
tion is formulated as minimization of some functional. This is a
nonlinear constrained optimization problem that has to be solved
iteratively. A key component of this approach consists in the effi-
cient computation of the Fréchet derivative of the functional with
respect to the stabilization parameter. This is achieved by utilizing
an adjoint problem with an appropriate right-hand side. The aim of
the present paper is to provide a new general framework for the
optimization of parameters in stabilized methods for convection-
diffusion equations and to demonstrate exemplarily the benefits
of this approach. A comprehensive discussion of the choice of
appropriate target functionals is postponed to the second part of
this paper.

The paper is organized as follows. Section 2 presents the equa-
tion and the SUPG method. A general approach for computing the
Fréchet derivative of a functional that depends on the numerical
solution with respect to parameters in the numerical method is
presented in Section 3. This approach is applied to the SUPG meth-
od in Section 4. Section 5 contains a proof of concept. It is demon-
strated that errors to known solutions can be reduced by using as
functional the error in some norm. For problems with unknown
solutions, Section 6 illustrates the application of the a posteriori
parameter choice based on the minimization of a residual-based
a posteriori error estimator, an error indicator, and a functional
that includes the crosswind derivative of the computed solution.
The most important conclusions, open problems, and an outlook
are presented in Section 7. Throughout the paper, standard nota-
tions are used for usual function spaces and norms, see, e.g., [6].
The notation (-,-)c with a set G ¢ RY, d = 1,2, 3, is used for the in-
ner product in the space L%(G) or L*(G)¢, with (-,-)=(-,-)e

2. The convection-diffusion problem and its SUPG stabilization

Consider the scalar convection-diffusion problem

ou
u=u,onI? e —_=gonrl".

on
(1)

Here, Q c RY, d =2,3, is a bounded domain with a polyhedral
Lipschitz-continuous boundary 8Q and I'®, I'N are disjoint and
relatively open subsets of 0 satisfying measy {(/°)>0 and
I'° ur" = 0Q. Furthermore, n is the outward unit normal vector
to 8, £ > 0 is a constant diffusivity, b € W">(Q)? is the flow veloc-
ity, c € L*(Q) is the reaction coefficient, fe L*(Q) is a given outer
source of the unknown scalar quantity u, and u, e H'/?(I'P),
g e L¥(IN) are given functions specifying the boundary conditions.
The usual assumption that

—¢Au+b-Vu+cu=fin Q,

c—%divb >c =0 (2)

with a constant ¢y is made. Moreover, it is assumed that
{x €0Q;(b-n)(x) <0} c I, (3)

i.e., the inflow boundary is a part of the Dirichlet boundary I'°.

This paper studies finite element methods for the numerical
solution of (1). To this end, (1) is transformed into a variational for-
mulation. Let i, € H' () be an extension of uj, (i.e., the trace of i,
equals up on I'?) and let

V={veH(®Q); v=0o0nI"}.
Then, a weak formulation of (1) reads: Find u € H'(€) such that
u—1u,cVand

au,v)=f,v)+ (g v)wn YveV, (4)
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