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This article proposes a new type of discretizations for initial boundary value problems of thermodynamical
systems. Based on a combination of finite elements in space and fractional stepmethods in time, we formulate
algorithms that exactly preserve the symmetries and the laws of thermodynamics of the continuum problem.
The algorithmic design is based on the GENERIC formalism of irreversible thermodynamics which naturally
suggests the split of the evolution operator upon which our fractional step method is based. Although the
emphasis of the article is on the generality of the results, as an illustration, a discretization of nonlinear, finite
strain, thermoelasticity is presented. Numerical simulations are provided that verify the excellent performance
of the new methods.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Applied mathematicians and mechanicians continue to search
for better discretization methods for approximating the solution of
the evolution problems that commonly appear in problems of fluid,
solid, structural, and celestial mechanics, thermodynamics, molecular
dynamics, and many other disciplines. Broadly speaking, the goals of
such efforts are to formulate numerical methods with increased
accuracy, robustness, and which replicate in the discrete setting the
most important features of the continuum problem, hence providing
insight into the physics of the real problem.

The last goal has motivated the development of structure preserv-
ing algorithms (see, for example, the monographs [1–4]). This diverse
family of methods, also known as geometric integrators, is designed to
produce numerical solutions that inherit some of the most important
qualitative properties of the systems they approximate. For instance,
integrators for Hamiltonian evolution equations aim to preserve the
symplectic structure [5], the Lagrangian structure [6,7], or energy and
momenta [8–12]. For this class of problems, in particular, the rich geo-
metric structure of the continuum equations has guided the numeri-
cal developments. For other type of problems, the lack of a unifying
mathematical structure has hindered the development of general
purpose, structure preserving discretizations.

In [13], henceforth referred to as Part I, we presented a framework
for the design of discretizations that, when applied to the evolution
equations of general thermodynamical systems, preserve the two
laws of thermodynamics as well as the possible symmetries. The
range of problems to which this new approach can be applied is very
wide, including in particular Hamiltonian mechanics. In the latter
case, the proposed algorithms reduce to the Energy–Momentum
method as described in [10,14]. The new methods are thermodynam-
ically consistent because when applied to isolated thermomechanical
systems, yield approximations whose energy remains strictly con-
stant and its entropy never decreases. Furthermore, when the
evolution equations have symmetries, the algorithms preserve them
as well.

The theoretical background for the new thermodynamically consis-
tentmethods, TCmethodshereafter, is theGENERIC (General Equations
for Non-Equilibrium Reversible–Irreversible Coupling) formalism for
non-equilibrium thermodynamics as developed originally in [15] and
summarized in the monograph [16,17]. This framework generalizes
Hamiltonian mechanics to dissipative systems and sets up an abstract
formulation that separates the reversible and irreversible parts of
the evolution operator. To discretize the reversible dynamics, the TC
methods employ the ideas of the Energy–Momentummethods. For the
irreversible part, a novel discretization technique is employed which
preserves the dissipative character without any coupling with the
reversible terms. Respecting this decoupling in the discrete setting is
crucial for the formulation of algorithms that mimic the thermody-
namic structure of the continuum problems.
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In Part I we proposed TC algorithms for general, infinite dimen-
sional, thermomechanical problems. The spatial discretization is based
on finite elements and the integration in time employs a modified
midpoint rule, resulting in monolithic schemes. As an application, we
showed the solution obtained with the new methods to the problem
of finite strain thermoelasticity, illustrating the conservation proper-
ties as well as the remarkable robustness of the method in repre-
sentative simulations. The most important drawback of such methods
is the computational cost associated with the coupled solution of all
the thermodynamic variables at all the nodes of the finite element
mesh. To improve this situation, we propose in the current article TC
staggered algorithmswith the same properties as themonolithic ones,
but with less CPU cost.

The basic idea of themethods proposed in this article is to continue
exploiting the GENERIC split of the evolution equations in coupled
problems. By using a TC method for the reversible part of the flow
(which is identical to an Energy–Momentum algorithm) and another
TC method for the irreversible part, fractional step methods with
the desired conservation properties can be obtained. The resulting
methods share the qualitative correctness of their monolithic coun-
terparts but are substantially faster. Moreover, not only the full
integrator is thermodynamically consistent, but also each one of the
fractional steps. In the same way that energy conservation/entropy
dissipation has a positive effect on the robustness of themonolithic TC
algorithms, the proposed staggered methods are remarkably robust.
These ideas were earlier explored by the author in [18] for evolution
problems in finite dimensional spaces and are given full generality in
the current article.

The landmark work on fractional step methods by Armero and
Simo [19–22] has similarities with the proposed algorithms. These
authors showed that by a judicious choice of the operator split in the
continuous equations of an evolution problem, important stability
improvements can be gained in fractional step methods derived from
them. Furthermore, it was shown that this increase in the numerical
robustness was ultimately due to the fact that each one of the (partial)
evolution operators of the split preserved the stability of the complete
problem. The work in the current article improves these results in two
ways: first, the appropriate split for the evolution equations need not
be guessed anymore because it is dictated by the GENERIC evolution
equation; second, the stability estimate of the evolution problem is
not only inherited by each one of the partial evolution operators, but
also by the discrete time marching schemes, in each of the fractional
steps. This latter property results in even further robustness of the
numerical solution.

As an application of the proposedmethods, we consider as in Part I
finite strain thermoelasticity. The derivation of the update equations
for the staggered TCmethods is worked out in detail. Numerical exam-
ples are presentedwhich illustrate the conservation properties as well
as the robustness of the method as compared with other standard
fractional step methods.

A summary of the rest of the article is as follows. Section 2 reviews
the essential features of GENERIC. In Section 3 we review the TC
monolithic algorithms introduced in Part I. These two sections pro-
vide the continuum and discrete background for the development of
a new class of fractional step methods, as described in abstract form
in Section 4. An application of the general methodology is given in
Section 5, where the full discretization of the finite strain thermo-
elasticity in the context of the new methods is described in detail.
Numerical results of the resulting formulations are given in Section 6,
where the proposed methods are compared with existing staggered
schemes. The article concludes with a summary of results in Section 7.

2. Evolution equations in GENERIC

At the core of the algorithms discussed in this article is GENERIC,
a recently proposed formalism that tries to unify the mathematical

description of non-equilibrium thermodynamics by providing a com-
mon structure to their evolution equations. This framework is fully
developed in [16] and has been summarized in Part I. In this section
we provide the essential ingredients of GENERIC for infinite dimen-
sional systems, introducing the notation for the rest of the article.

2.1. Basic definitions

We consider thermomechanical systems consisting of a deform-
able body Bo⊂Rn with points denoted X and thermodynamic state
space S, which includes all smooth mappings z:Bo→Rm. The set S is
assumed to be a subset of an infinite dimensional vector space V with
inner product 〈·,·〉: V×V→R and which we identify with its dual V⁎.
The tangent space of S can be identified with V itself. The functional

derivative of a functional F :S→R is denoted
δF
δz

.

For the mathematical description of the evolution problems of
interest two types of bilinear operations are required. First, a Poisson
bracket is an operation mapping two functionals F , G: S→R into a
new functional {F , G}: S→R. The operation {·,·} must be bilinear,
skew-symmetric, and satisfy Leibniz and Jacobi properties. Second, a
dissipative bracket is defined to be another bilinear operation taking
two functionals F , G as above, into a new functional [F , G]: S→R. This
second operation must be symmetric and positive semidefinite.

Associatedwith the previous brackets, there exist differential oper-
ators L, M: S×V→V defined by the relations:

F ;Gf g = h δF
δz

; LðzÞ δG
δz

� �i ; ½F ;G� = h δF
δz

;MðzÞ δG
δz

� �i: ð1Þ

For any pair (z, V)2S×V we write L(z)[V] instead of L(z, V) to
stress that the operator L must be linear on its second argument.
Often, the explicit dependence of L on the state variable z is omitted.
The same convention applies to the friction operator M.

2.2. The GENERIC evolution equations

Next we consider isolated thermomechanical systems with total
energy E and entropy S, respectively. If its thermodynamic state in
time is described by a curve zt:[0, T]→S then the GENERIC equations
of evolution can be written as

Ḟ ðztÞ = fFðztÞ; EðztÞg + ½FðztÞ; SðztÞ�; ð2Þ

for any functional F :S→R. In the previous equation the superposed
dot indicates the time derivative.

Whereas the specific form of the brackets is not known for all
thermodynamical systems, the GENERIC formalism guarantees that if
found, the evolution equations (2) model the dynamics of a system
that strictly satisfies the two laws of thermodynamics as long as the
brackets satisfy the degeneracy conditions:

fS;Fg = ½E;F� = 0; ð3Þ

for every functional F :S→R. In terms of the operators L and M, the
degeneracy conditions read:

h δF
δz

; L
δS
δz

� �i = h δF
δz

;M
δE
δz

� �i= 0: ð4Þ

For the numerical implementation of the GENERIC equations of
evolution it proves useful to write (2) in weak form. To that end, we
define the vector fieldw = δF

δz , use the definition of directional deriva-
tive and the operators (1) to rewrite the GENERIC evolution equations
as:

hw; żti = hw; L
δE
δz

� �i + hw;M
δS
δz

� �i: ð5Þ
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