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Mesh-free methods offer the potential for greatly simplified modeling of flow with moving walls and phase
interfaces. The finite volume particle method (FVPM) is a mesh-free technique based on interparticle fluxes
which are exactly analogous to intercell fluxes in the mesh-based finite volume method. Consequently, the
method inherits many of the desirable properties of the classical finite volume method, including implicit
conservation and a natural introduction of boundary conditions via appropriate flux terms. In this paper, we
describe the extension of FVPM to incompressible viscous flow with moving boundaries. An arbitrary
Lagrangian–Eulerian approach is used, in conjunction with the mesh-free discretisation, to facilitate a
straightforward treatment of moving bodies. Non-uniform particle distribution is used to concentrate
computational effort in regions of high gradients. The underlying method for viscous incompressible flow is
validated for a lid-driven cavity problem at Reynolds numbers of 100 and 1000. To validate the simulation of
moving boundaries, flow around a translating cylinder at Reynolds numbers of 20, 40 and 100 is modeled.
Results for pressure distribution, surface forces and vortex shedding frequency are in good agreement with
reference data from the literature and with FVPM results for an equivalent flow around a stationary cylinder.
These results establish the capability of FVPM to simulate large wall motions accurately in an entirely mesh-
free framework.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this article we describe a validated development of the mesh-
free finite volume particle method (FVPM) for incompressible flow
around moving bodies. Mesh-free methods for computational fluid
dynamics (CFD) represent the fluid with a set of moving nodes or
particles rather than with a fixed mesh of nodes with predefined
connectivity. Mesh-free methods are particularly suited to flows with
free surfaces, moving walls and multiple phases because interfaces
can be treated without remeshing or special geometric treatments.
Furthermore, they have the potential to reduce the cost of expert
human effort required for mesh generation.

Smoothed particle hydrodynamics (SPH) is the most mature and
widely applied mesh-free method for CFD. SPH, proposed indepen-
dently by Gingold andMonaghan [1] and Lucy [2], is a fully Lagrangian
technique in which the particles have fixed mass, and local
conservation is enforced through pairwise symmetric particle inter-
actions. Gradient approximations for the flow variables at each
particle are computed on the basis of a smoothed interpolation
process. SPH was originally developed for unbounded problems in
astrophysics, but has seen extensions to industrially relevant

applications. A recent review of SPH is given by Monaghan [3]. The
method has yielded accurate predictions of challenging realistic
problems including complex 3D unsteady free-surface flows [4].

Boundary conditions in SPH are typically enforced through
fictitious particles on the boundary and/or outside the fluid domain.
This approach is difficult to generalise to arbitrary geometries. The
basic SPH gradient approximation is not exact for constant-valued
functions (i.e. not zero-order consistent) [5] and numerical error does
not necessarily vanish as the particle size tends to zero [6]. The
consequences of this behaviour are not fully understood. All particle-
based methods incur relatively high computational costs because of
the use of a large computational stencil, which must be reconfigured
after every particle position update. The cost is compounded by the
facts that the initial particle distribution evolves with the flow, and
that SPH-like methods suffer degraded convergence and/or conserva-
tion properties in the presence of non-uniform particle distributions.
Consequently, it is not straightforward to employ a heterogeneous
particle distribution to allocate computational effort economically to
the spatial regions where it is most needed.

These problems have motivated the development of mesh-free
particle schemes with improved accuracy, simpler boundary condi-
tion implementations, and a capacity for non-uniform particle
distributions. These include the corrected SPH schemes of Randles
and Libersky [7] and Bonet and Lok [8], which ensure first-order
consistency at the expense of conservation. Other authors have
developed flux-based formulations including the smooth volume
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integral conservation method of Ismagilov [9], the Riemann-SPH
schemes of Vila [10] and Monaghan [11], and the finite volume
particle method (FVPM) of Hietel et al. [12]. In this article we focus on
the FVPM, which maintains conservation even when particle size and
particle overlap are not uniform.

In FVPM, the fluid is represented by a set of particles, which are
associated with normalised, overlapping, compactly supported kernel
functions. The particles are viewed as discrete volumes for which the
governing equations are written in integral form, weighted by test
functions. Particle interactions are defined in terms of fluxes, which
are weighted depending on the overlap of the kernel supports. The
FVPM is closely analogous to the classical finite volume method
(FVM) and inherits many of its desirable properties, including exact
conservation and a natural introduction of boundary conditions via
appropriate flux terms. Furthermore, well-established developments
for traditional CFD methods, such as upwind flux formulations, may
be used in the FVPM without modifications. The basic FVPM scheme
has been extended to incorporate adaptive variation of the particle
support radius [13], moving boundaries in inviscid compressible flow
[14,15], a projection technique for incompressible flow [16,17], and
higher-order accuracy and viscous flow [18].

Many important and challenging applications of fluid dynamics are
characterised by incompressible viscous flow with moving walls or
interfaces. These include flow in blood vessels, medical devices and
marine systems. In this article, we describe a development of the finite
volume particle method with pressure projection for incompressible
viscous flow with moving boundaries (Section 2). The mesh-free
character of the FVPM is exploited in an arbitrary Lagrangian–Eulerian
(ALE) framework to handle the discretisation near the moving body.
In addition, we introduce an improved formulation for the compu-
tation of particle volume, and exploit non-homogeneous particle
distribution to enhance the efficiency of the method. The method is
first validated for incompressible viscous flow in a lid-driven cavity
(Section 3.1). The capability to model flow with moving walls is
validated by simulating flow over a cylinder translating relative to
domain boundaries at Reynolds numbers from 20 to 100 (Section 3.2).
Results are compared with data for a stationary cylinder, as well as
results from the literature.

2. The finite volume particle method

2.1. Governing equations

In the present work, we consider the application of FVPM to
viscous incompressible flow. The governing continuity and momen-
tum equations are written as

∇ ⋅ u = 0 ð1Þ

and

∂U
∂t + ∇ ⋅ F−Gð Þ = 0; ð2Þ

where u=(uv)T is the 2D velocity vector,U=ρu, ρ is the density and t
is time. F=(ρu⊗u+pI) represents the inviscid flux, where I is the
D×D identity matrix, and D denotes the number of dimensions. The
two-dimensional incompressible viscous flux is given by
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where μ is the dynamic viscosity.

2.2. The FVPM formulation

The FVPM was originally derived by Hietel et al. [12]. The
formulation is outlined briefly here. In FVPM, the fluid is represented
by a set of N particles. These particles are defined by compactly
supported, overlapping test functions ψi of the form

ψi x;tð Þ = Wi

∑N
j = 1Wj

; ð4Þ

where Wi=W(x−xi(t), h) is a compactly supported kernel function
for particle i, centred at xi. The compact support radius is 2h, where
h is called the smoothing length, in keeping with the SPH convention.
The denominator normalises the kernel function to ensure that the
test functions form a partition of unity, i.e.

∑
N

i=1
ψi x;tð Þ = 1: ð5Þ

Each particle is associated with a volume

Vi = ∫
Ω
ψidx; ð6Þ

and a discrete value of any field variable ϕ

ϕi =
1
Vi

∫
Ω
ϕψidx; ð7Þ

which is a weighted average of ϕ over the domain Ω. ϕi is associated
with the particle barycentre bi, defined as

bi =
1
Vi

∫
Ω
xψidx: ð8Þ

Denoting as Fij an approximation for the Eulerian inviscid flux F
between particles i and j, the ALE inviscid flux is Fij− ̅Uij

̅ẋij, where the
Uij

̅ẋij term is the convection due to the particle motion. The particle
velocity ẋ is not necessarily equal to the material velocity u. Following
Teleaga and Struckmeier [14], ̅Uij and

̅ẋij are defined as the averages
1
2
Ui + Uj
� �

and 1
2
ẋi + ẋj
� �

respectively. IntroducingF(Ui,Uj) to denotea
numerical approximation to Fij− ̅Uij

̅ẋij, Hietel et al. [12] derived the
semi-discrete form of the FVPM for inviscid flow as

d
dt

ViUið Þ = − ∑
N

j=1
βij F Ui;Uj

� �� �
−βb

i F b
i ; ð9Þ

where

βij = ∫
Ω

ψi∇Wj−ψj∇Wi

∑N
k=1Wk

dx ð10Þ

are interaction vectors which weight the flux exchanged between
particle i and each of its neighbours j. The interaction vector βij

between particles i and j is analogous to the cell interface area vector
which weights intercell fluxes in the classical finite volume method
[19]. Eq. (10) is typically evaluated by numerical integration. In Eq.(9),
βi
b is the particle-boundary interaction vector and F b

i is an
approximation for the boundary flux (boundary conditions are
discussed in full in Section 2.7).

The appearance of the particle volume inside the time derivative in
Eq. (9) means that an additional equation is required for the rate of
change of the particle volume. Hietel et al. [12] show that this can be
obtained by differentiating Eq. (6) with respect to time, yielding

d
dt

Vi = ∑
N

j=1
γij⋅ ẋj−γji⋅ ẋi

� �
; ð11Þ
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