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Young’s modulus is at the center of attention in the stochastic finite element analysis since the parameter
plays an important role in determining structural behavior. However, the other material parameter of
Poisson’s ratio is another independent material parameter that governs the behavior of structural sys-
tems. Accordingly, the independent estimation of the influence of this parameter on the uncertain
response of a system is of importance from the perspective of stochastic analysis. To this end, we propose
a formulation to determine the response variability in laminated composite plates due to the spatial ran-
domness of Poisson’s ratio. To filter out the independent contribution of random Poisson’s ratio, a decom-
position of the constitutive matrix into several sub-matrices by using the Taylor’s expansion is needed,
which makes the random Poisson’s ratio simple enough to be included in the formulation. To validate
the adequacy of the proposed formulation, several examples are chosen and the results are compared
with those given by Monte Carlo analysis. By means of the formulation suggested here, it is expected that
an extension of the formulation to include the effect of correlations between random Poisson’s ratio and
other structural and/or geometrical parameters will be achieved with ease, resulting in a more practical

estimation of the response variability of laminated composite plates.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Intrinsically, the structural materials from general structural
steel and concrete in civil engineering applications, which are as-
sumed to be isotropic, to composite materials have randomness
in their material properties, such as the elastic modulus, shear
modulus, the Poisson’s ratio. In particular, the composite materials
for which the fibers and matrix materials are combined to com-
plete a lamina, the processes of lay-up and curing are relatively
complex when compared with the conventional isotropic materi-
als. In particular, the strength of the composites is known to be
affected by the fiber volume fraction [1], which is random in
nature. For these reasons the possibility of spatial uncertainty in
the material properties of composites is expected to be high. In this
respect, the stochastic evaluation of response variability on the
composite materials is highly demanding.

In the area of the stochastic finite element analysis, research
topics include the investigation of the effect of not only the spatial
randomness of material properties but also the geometrical param-
eters on the response variability [2-6] of various structural types
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built with conventional materials. Developments, however, linked
to the analysis of composite structures with random material prop-
erties are relatively limited. Due to the complexity in the mathe-
matical expressions for composite materials, which makes the
formulations for the non-statistical approach difficult, the Monte
Carlo simulation (MCS) approach has been employed for a variety
of stochastic problems including free vibration analysis [7], the
effect of random geometrical parameters assumed as distributed
in a Gaussian way [8]. Some research works have focused on the
cracks and failure of random composites [9]. Regarding the failure
probability or reliability, Onkar et al. [10,11], Cassenti [12], Kam et
al. [13] and Lekou and Philippidis [14] have demonstrated the
effect of random material properties. Hilton and Yi [15] deal with
the topic on the delamination of composites. The spectral version
of the stochastic FEM methodology has been proposed by Chen
and Guedes Soares [16] for laminated composite plates assuming
the elastic and shear moduli as Gaussian random fields.

In this study, we restrict the randomness only to the Poisson’s
ratio in order to investigate the sole effect of this material param-
eter on the response variability of laminated composite structures.
For composite materials, a reciprocal relation exists in between the
material constants along mutually perpendicular material axes
because of the symmetry in the compliance matrix. Using this
feature and then employing the Taylor’s expansion on the typical
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fraction form of constitutive relations, we construct the constitu-
tive matrix in the power series expansion form, which enables us
to complete a formulation for stochastic finite element scheme
for composite materials. The suggested scheme is applied to vari-
ous composite plates, and the results given by the proposed
scheme are compared with the MCS results performed in this
study. Some qualitative comparisons are also made if possible
employing the results in the literature.

2. Introduction of randomness
2.1. Randomness in Poisson’s ratio

From the general concept of randomness in stochastic mechan-
ics, all the material parameters involved in structures have two
components: the mean and the deviator. The deviator part is
assumed as a function of position, having a specific probabilistic
distribution. If we apply the mean operation on a random param-
eter, the deviator part vanishes and only the mean remains.
Accordingly, a parameter p can be assumed to have the following
mathematical expression:

p(X) =p[1 +f(X)], X € Dar, (1)

where, p denotes the mean of the parameter p(x), f,(x) the stochas-
tic field function having zero-mean and Dy, the domain of the struc-
ture. In case of the coefficient of variation (CoV) of the parameter p,
the following holds:

g
Cvpzfngfv (2)

which shows the CoV of a random parameter is equal to the
standard deviation of the stochastic field f{x) of the random param-
eter, which describes the deviator part of the random parameter in
the spatial domain.

In expressing the randomness of the Poisson’s ratio, the general
expression of (1) can be adopted, and the following is assumed:

V(X) =V[1 +£(X)], X € Dgr. 3)

The stochastic field function is assumed to have values —1 + §;<
fux)<1 -6 with 0<d;<1 to avoid the occurrence of a non-
physical negative material constant. In this study, the probabilistic
distribution of random Poisson’s ratio is assumed to follow the
Gaussian distribution, which we can assume for a random parame-
ter if the coefficient of variation is relatively small [7,17] around 0.1,
and the characteristics of the stochastic field is assumed as not
dependent on the position, i.e.,, homogeneous. In the case of the
composite materials, the Poisson’s ratio has two different values
depending on two material directions. This issue, including the re-
ciprocal character of the Poisson’s ratio relative to the two elastic
moduli in each material direction, is addressed in the following
section.

2.2. Stress-strain relation with random Poisson’s ratio

Following the conventional notations and reducing the dimen-
sion of material under consideration into that of in-plane, i.e., in
the state of plane-stress, the stress-strain relation for (k)th lamina
in the principal material coordinates is given as follows:
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Each coefficient can be determined in terms of engineering material
constants as

_ E vk - E»
QG = 1—viavar’ Q2 = 1—viavy’ Qa2 = 1—viavyr’ (5)
Qs =Ga3, Qs5 =G13, Qg6 = Gr2.

In the above expressions, Poisson’s ratios v;, and v,; follow the re-
ciprocal relations (with no sum on i, j):
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which enable us to make one of the Poisson’s ratios be expressed by
the other in terms of elastic moduli for two material directions.
Therefore, adopting Eq. (6) for Poisson’s ratio vi,, it is possible for
the coefficients Q;; in Eq. (5), for example, to be modified as
follows:

(7)

where, 12 is given as the ratio of one elastic modulus to the other,
r = /E,/E;. Usually, r is very small for composite materials [18].
As seen in Eq. (7), the coefficients Qy1, Q12, Qx are given in the form
of 1/(1 —x), which can be expanded using Taylor’s expansion
formula resulting in 1/(1 — x) = 3¢ ,x*. Therefore, by substitution
of the general expression for a random Poisson’s ratio of
Vi2(x) = V12[1 + fy(x)] into Eq. (7) and employing Taylor’s expansion,
we get the expanded form of coefficient as follows (refer to
Appendix I):
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where, Vi, and f,(X) denote the mean and the stochastic field
function of Poisson’s ratio v, respectively. In an analogous way,
the other terms can be established in a similar form as follows
(refer also to Appendix I):
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In obtaining Eqgs. (8) and (9), the binomial theorem is applied, which
enables us to derive the expressions for constant terms of respective
power stochastic field functions f!. As seen in Egs. (8) and (9), we
can note that the formulae for constants of Q;; and Q,, are equal
to each other, while the constants for Q, is slightly different from
the other two.

Symbolically, we can rewrite Egs. (8) and (9) as follows:

Qi = Ei(By + Bify + Bof? + Bafy + Baf)) = E1Bif},
Q2 = Ex(Bo + Bufy + Bof? + Baf} + Buf)) = E2Bf}, (10)
Quz = Ea (0o + 91fy + 1f? + 9383 + 7)) = B0l

Even though the theoretical expressions are given as infinite series,
we can truncate the higher order terms over the 4th power of the
stochastic field function with only an error small enough to be ig-
nored. As expected, as the power increases the contribution form
the higher order terms decreases because the stochastic field func-
tion is in the range of —1 + §;< f, <1 — 5 In comparison of Egs. (8)-
(10), it is apparent that the constants g;, y; are



Download English Version:

https://daneshyari.com/en/article/498658

Download Persian Version:

https://daneshyari.com/article/498658

Daneshyari.com


https://daneshyari.com/en/article/498658
https://daneshyari.com/article/498658
https://daneshyari.com

