
Topology optimization using a reaction–diffusion equation

Jae Seok Choi a,⇑, Takayuki Yamada b, Kazuhiro Izui a, Shinji Nishiwaki a, Jeonghoon Yoo c

a Department of Mechanical Engineering and Science, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
b Department of Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
c School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Republic of Korea

a r t i c l e i n f o

Article history:
Received 23 October 2010
Received in revised form 22 March 2011
Accepted 13 April 2011
Available online 20 April 2011

Keywords:
Topology optimization
Reaction–diffusion equation
Phase field model
Allen–Cahn equation
Sensitivity analysis

a b s t r a c t

This paper presents a structural topology optimization method based on a reaction–diffusion equation. In
our approach, the design sensitivity for the topology optimization is directly employed as the reaction
term of the reaction–diffusion equation. The distribution of material properties in the design domain
is interpolated as the density field which is the solution of the reaction–diffusion equation, so free gen-
eration of new holes is allowed without the use of the topological gradient method. Our proposed method
is intuitive and its implementation is simple compared with optimization methods using the level set
method or phase field model. The evolution of the density field is based on the implicit finite element
method. As numerical examples, compliance minimization problems of cantilever beams and force max-
imization problems of magnetic actuators are presented to demonstrate the method’s effectiveness and
utility.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Reaction–diffusion systems are mathematical models that use
partial differential equations to model two processes: one is a
‘reaction,’ referring to how two substances react locally, and the
other is a ‘diffusion’ that tends, over time, to equalize the concen-
tration of substances occupying a space. The reaction–diffusion
equation can model many complicated natural phenomena that
occur due to the propagation of interfaces between substances.
For example, in population dynamics [1,2], combustion [3], chem-
ical reactions [4,5] and biological morphogenesis [1,6], the phases
of interacting substances create unique patterns as their fronts
propagate.

The simplest reaction–diffusion system is a one-dimensional
model describing the propagation of a gene population, introduced
by Fisher [7]. In Fisher’s equation, a non-linear quadratic form is
used as the reaction term. Fisher showed that there exists a mini-
mal velocity of the propagating interfaces. While Fisher’s equation
is a reaction–diffusion system with only one component, it is pos-
sible to expand the expression to an N-component vector field.
Generally, two- or three-component systems have much broader
application compared with one-component systems. In this study,
one- and two-component reaction–diffusion systems are applied
in methods to solve several structural topology optimization
problems.

Since a seminal paper by Bendsøe and Kikuchi [8], structural
topology optimization has become an established and effective de-
sign tool in various physical systems for stiffness maximization
problems [8,9], compliant mechanism design problems [10,11]
and microstructure designs [12–14]. In contrast with traditional
methods like sizing or shape optimization, topology optimization
permits radical design evolution beyond initially proposed models.
A widely used topology optimization method is based on the SIMP
(Solid Isotropic Material with Penalization) method [15], an ap-
proach that allows density values from 0 to 1 while suppressing
intermediate densities in the optimal design by penalization [16].
However, the utility of SIMP method optimal results is often de-
graded by the generation of intermediate densities, checkerboard
patterns and mesh dependency [16,17]. To avoid these numerical
instabilities, filtering techniques [18] and the perimeter control
method [19] have often been employed.

Another well known structural optimization approach is level
set-based methods. A structural design using this method was first
performed by Sethian and Wiegmann [20], in which evolution of
the level set function was based on the stress distribution of the
current design. This method implicitly represents structural
boundaries by the iso-contour of the level set function, which is
generally updated based on the Hamilton–Jacobi formulation
[21], allowing level set-based optimization methods to avoid the
numerical problems of the SIMP method described above. How-
ever, since the level set method originally tracks free boundaries,
using shape derivatives, it does not allow for the nucleation of
new inner holes (at least in two-dimensional problems). In order
to resolve this problem, the bubble method (or the topological
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gradient method) [22,23] is typically coupled with a conventional
level set-based method.

In the level set-based optimization method using the Hamilton–
Jacobi equation, during the evolution of the level set function, the
level set function does not maintain the signed distance function
characteristic, and reinitialization is therefore required. The need
for reinitialization is one of the main drawbacks of the level set
method, since it is computationally troublesome and expensive.
Recently, other reinitialization-free level set approaches, different
from traditional level set methods based on the Hamilton–Jacobi
equation, have been proposed by some researchers. Wei and Wang
[24] introduced a structural optimization method using a piece-
wise constant level set method first proposed for segmentation
of digital images by Lie et al. [25]. In this method, the interfaces
are represented by discontinuities of constant level set functions
and as a result, the level set function has sharp interfaces. Another
approach for avoiding reinitialization is the method proposed by
Yamada et al. [26], where an objective functional including a ficti-
tious interface energy is used.

Currently, phase field methods are accepted as structural opti-
mization methods. Although phase field methods are not yet
widely employed for structural optimization, unlike level set-
based methods, they are useful for simulating interfacial dynamics
for phase transition phenomena such as solidification [27], den-
dritic growth [28] and fluid interface modeling [29]. In common
with the level set-based method, this approach implicitly tracks
the interface between phases, but does not need a reinitialization
process, and this approach has recently been used for topology
optimization by some researchers. Bourdin and Chambolle [30] ap-
plied a phase field method to dam design. Wang and Zhou [31,32]
explored structural optimization using the Cahn–Hilliard equation
[33]. Most recently, Takezawa et al. [34] proposed a structural opti-
mization method based on the Allen–Cahn equation [35], a kind of
reaction–diffusion equation with low computational cost com-
pared to the fourth order Cahn–Hilliard equation. In phase field
models, a Lyapunov energy functional includes a smooth double-
well potential that takes a globally minimum value at each phase
level.

In this work, we introduce a new topology optimization method
based on a reaction–diffusion equation. In addition to our
approach, two structural optimization methods using a reaction–
diffusion equation have recently been reported. One is a phase
field-based optimization method using the Allen–Cahn equation
proposed by Takezawa et al. [34] and the other is the level
set-based method proposed by Yamada et al. [26]. The former is
similar to our approach except that it includes the double-well
potential in the reaction term, so that intermediate densities can
be avoided. However, free changes in structural topology are as
problematic as with conventional level set-based methods, since
the design sensitivity is available only in phase transition regions.
The latter is a level set-based topology optimization method using
topological derivatives [22,23], which supports the generation of
new void holes. The structural boundaries are determined by using
a relaxed Heaviside function and thus it is regarded as a level set-
based method. Unlike conventional level set methods, the level set
function is updated based on a reaction–diffusion equation, and
optimized results using this approach show clear and smooth con-
figurations. However, no explanation on how to derive the design
sensitivity using topological derivatives was provided, nor was a
mathematically rigorous proof regarding this issue given.

Our proposed optimization method does not include the dou-
ble-well potential, so it supports flexible changes in structural
topology according to the design sensitivity. The employed design
sensitivity is the derivative of the objective function with respect
to the design variables and it is directly used as the reaction term
in the reaction–diffusion equation. Our optimization method thus
has an advantage due to its simple and intuitive implementation.
Furthermore, it converges quickly and supports the free nucleation
of new holes, in contrast with level set-based optimization meth-
ods, since the sensitivity is loaded over the whole design domain.
Our approach is applied in several examples of structural designs
subject to elastic fields and magnetic fields. The state variables of
these systems and the reaction–diffusion equation are solved using
the finite element method.

The plan of this paper is as follows. In Section 2, we propose the
optimization method and develop an algorithm based on the

Fig. 1. Partition of material phases by a diffuse interface: (a) material separation by an interfacial layer; (b) phase transition of the phase-field function; and (c) phase
transition of the density field proposed in our approach.
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