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a b s t r a c t

In this paper we introduce a mixed formulation of the Bingham fluid flow problem. We consider both the
original and a regularized version of the problem, where a parameter e is introduced, forcing the entire
domain to be formally a fluid region. In general, common solvers for the regularized problem experience a
performance degradation when the parameter e gets smaller. The method studied here introduces an
auxiliary tensor variable and shows enhanced numerical properties for small values of e. A good perfor-
mance is also observed for the non-regularized case. The well posedness for the regularized problem and
the equivalence – at the continuous level – between the original (primitive variables) and the mixed for-
mulation are demonstrated. We analyze properties of linearized problems that are relevant for the con-
vergence of numerical solvers. A finite element method for the mixed formulation is discussed. Numerical
results confirm the predicted better performances of the mixed formulation when compared to the
primitive variables formulation. A comparison to a non-regularized solver based on the augmented
Duvaut–Lions–Glowinski formulation of the problem is carried out as well.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Bingham plastic is a material that behaves like a rigid
medium for stresses s not exceeding a certain critical value ss

(called the yield stress) and behaves like an incompressible fluid
if the stresses are equal to or exceed ss. The viscosity of the fluid
depends on the shear rate, thus the Bingham flow represents an
example of a non-Newtonian fluid. Bingham fluids occur in many
situations of geophysical as well as industrial interest, see [6] for
a comprehensive review, and more recently [37] for the applica-
tions in hemodynamics.

Let Du ¼ 1
2 ðruþruTÞ denote the strain rate tensor and let

jDuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du : Du
p

be the Frobenius norm of Du. The conservation
of momentum in the steady case for an incompressible fluid reads

�divsþrp ¼ f
r � u ¼ 0

�
in X; ð1:1Þ

where div denotes the divergence operator for tensors, u, p are the
unknown velocity and pressure. For Bingham fluids the domain X is
split into two subdomains, the fluid region Xf and the rigid (or plug)
region Xr. The constitutive relation for the stress deviator tensor s
and the strain rate tensor reads

Du ¼
0 for jsj 6 ss ðrigid regionÞ;

1� ss

jsj

� �
s

2l
for jsj > ss ðfluid regionÞ:

8<
: ð1:2Þ

where the plastic viscosity l > 0 and the yield stress ss P 0 are
given constants. These equations can be observed as a generaliza-
tion of the classical Stokes equation having in Xf a shear dependent
viscosity l̂ ¼ 2lþ ss

jDuj that reduces to the Stokes equations with

constant viscosity for ss = 0. One of the difficult features of the prob-
lem is that the two regions are unknown a priori and finding them is
a part of the problem; also l̂ becomes singular in the plug zone. A
common way to avoid this difficulty is to regularize l̂. This can be
done in different ways, see e.g., [4,32,18]. Here we consider the
Bercovier–Engelman regularization [4]: in the definition of l̂ the
norm jDuj is replaced with jDuje ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du : Duþ e2
p

. Extension of the
approach presented hereafter to other forms of regularization can
be considered as well. The regularization ensures l̂ to be nonsingu-
lar even in presence of plug regions and the fluid equations can be
posed in the entire domain:
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�div 2lþ ss

jDuje

� �
Duþrp ¼ f

�r � u ¼ 0

8<
: in X: ð1:3Þ

The regularized model can be treated as the model of a quasi-
Newtonian fluid flow and its numerical implementation becomes
relatively simple within an existing CFD code. A variety of well-
established computational techniques, including parameter free
iterative algorithms as Newton method and Krylov subspace meth-
ods, can be used to treat the regularized equations numerically.
However, the regularization prevents finding the ‘exact’ visco-plas-
tic solution. In particular, finding arrested states and defining plug
regions with e > 0 become non-trivial tasks, see [35] and also
[38,39] (the latter papers deal with compressible fluids). Therefore
accurate and predictive computations demand using small values
of the regularization parameter e (see e.g., [18,31,12]). Using small
values of e in (1.3) gives rise to several computational issues. For
example, the Newton method applied to the regularized problem
(1.3) is not robust with respect to e (see [12] and numerical results
in [25,26]). The domain of convergence for the Newton method
shrinks as e ? 0. Indeed, the norm of the matrix of the second deriv-
atives grows like O(e�1) [12] implying that to ensure convergence
the initial guess for the Newton method should belong to an O(e)-
neighborhood of the (unknown) solution. One possibility to over-
come the issue is to apply a continuation method in e. This means
that e is selected dynamically and it gets smaller along the itera-
tions. Another option is to perform a number of more robust Picard
iterations and switch to the Newton method when a sufficiently
good approximation to the solution is found. In the latter case, how-
ever, the required number of Picard iterations still grows as e ? 0
[25].

Both mathematical and numerical difficulties forced several
authors to consider different formulations of the problem (1.1)
and (1.2). One approach is based on the variational inequality for-
mulation of Duvaut and Lions [15] and has been proposed by Glo-
winski and coauthors (see Section 8 of the review paper [13] and
refereneces therein). The formulation has been studied mathemat-
ically and used to solve the problem numerically with Uzawa-like
iterative schemes. The iterations are proven to be convergent upon
the introduction of a relaxation parameter (see [12]), however may
exhibit a slow convergence rate. Nevertheless, the approach is
attractive for solving practical problems when it is necessary to
compute the ‘true’ visco-plastic solution and find the plug region
(see e.g., [35,34]). We briefly review this approach in Section 5.

In this paper, we consider a different formulation intended to
enhance the numerical properties of the regularized formulation
(1.3). We introduce an auxiliary symmetric tensor W such that

jDujeW � Du ¼ 0: ð1:4Þ

Equations (1.3) in X with the auxiliary variable read

�divð2lDuþ ssWÞ þ rp ¼ f ;
�r � u ¼ 0:

�
ð1:5Þ

System (1.4) and (1.5) represents the mixed formulation we inves-
tigate in this paper. We will show that this formulation is efficient
for solving the regularized problem. For a given e the number of
nonlinear iterations required for convergence is significantly re-
duced compared to solving the original problem (1.3) in the primi-
tive variables. While most analysis of (1.4) and (1.5) is carried out in
this paper for e > 0, numerical results show that the method re-
mains efficient even for the case e = 0. In this case, the approach
and the resulting iterative method compares favorably with the
Uzawa type algorithm for the augmented Lagrangian saddle-point
formulation of Glowinski et al.

The mixed formulation (1.4) and (1.5) is closely related with the
approach of Cea and Glowinski [7] (see also Sections 5–7 in [13]).
In that approach a symmetric tensor W satisfying W : Du ¼j Du j
was introduced in the numerical formulation through the relation

W ¼ PðW þ rDuÞ 8r P 0; ð1:6Þ

with the projector P on the convex set of tensor functions
Z 2 (L2(X))d�d satisfying jZj < 1. The projector is defined by
PðZÞðxÞ :¼ ZðxÞ½maxf1; j ZðxÞ jg��1. The equations (1.5) and (1.6)
were solved numerically with the Uzawa type method with W
serving for the primal iterated variable and r as a relaxation param-
eter. Further, a special regularization was introduced in [13] to facil-
itate the application of a variant of the Newton method. While
formulation (1.4) and (1.5) is formally equivalent to (1.5) and (1.6)
for e = 0, it leads to a different variational formulation and finite
element solutions, coupled iterative algorithms of Picard and (for
e > 0) Newton may be directly applied. Moreover (1.4) and (1.5) is
amenable to common regularizations like the one used in this paper.

The remainder of the paper is organized as follows. Necessary
notations and preliminaries are given in Section 1.1. In Section 2,
we consider the weak formulations of (1.3) and (1.4)–(1.5) and
prove some well-posedness results. Some linearized problems are
studied here as well. We prove that the weak formulations of
(1.3) and (1.4)–(1.5) are equivalent in the sense that they share
the unique solution. At the same time, equivalence does not neces-
sarily hold for the corresponding numerical discretizations. In Sec-
tion 3 we introduce non-linear iterative methods of Picard and
Newton for solving (1.3) and (1.4)–(1.5). Several convergence esti-
mates for the case e > 0 are proven which suggest the superior
properties of (1.4) and (1.5) in building efficient solvers. A finite
element discretization method is considered in Section 4, including
the discussion of algebraic properties of resulting discrete systems.
In Section 5 we briefly recall another method for numerical treat-
ment of the Bingham problem (1.1) based on variational inequali-
ties and augmentation. Several numerical results are presented in
Section 6. These results show that the mixed formulation (1.4)
and (1.5) leads to much better convergence rates than the primi-
tive variables formulation (1.3). Moreover, it appears that the Pi-
card method for solving (1.4) and (1.5) is applicable with e = 0
and demonstrates fast convergence even in this limit case. Thus
for e = 0, we include few results of comparison with the Uzawa
method for the augmented saddle-point formulation of Glowinski
et al. In this section, we also consider a continuation Newton meth-
od based on the mixed formulation. Section 7 contains some clos-
ing remarks.

1.1. Notations and preliminaries

In what follows, we use the standard notation for the func-
tional spaces we need: for 1 6 p 61 and k > 0, Lp(X), Hk(X)
are standard Lebesgue and Sobolev spaces. Also L2

0ðXÞ denotes
the subspace of L2(X) of functions with zero mean over X,
H1

0ðXÞ is the space of functions in H1(X) with vanishing trace
on @X. The corresponding spaces for (2D or 3D) vectors are de-
noted in bold, e.g. L2(X), Hk(X) or H1

0ðXÞ. The subspace of H1
0ðXÞ

of divergence free vector-functions is denoted by V. We use the
notation HkðXÞ for tensors whose components are Hk(X) func-
tions. For symmetric tensors, this particularizes to
Lp

s ðXÞ; Hk
s ðXÞ. When there is no possibility of confusion, we

omit the indication of the domain X. The norm in Hk is denoted
by k � kk, the scalar product and the norm in L2 is denoted by (�, �)
and k � k, respectively, the same norm and product notation is
used for the vector and tensor counterparts of Hk and L2.

From the vector identities 2divD = D +rr� and rr � = D +
r�r�with the help of integration by parts one immediately gets
the following Korn type inequalities
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