
Author's Accepted Manuscript

TOOL WEAR CHARACTERIZATIONS IN FINISH TURNING OF AISI 1045 CARBON STEEL FOR MQCL CONDITIONS

Radoslaw W. Maruda, Grzegorz M. Krolczyk, Eugene Feldshtein, Piotr Nieslony, Tyliszczak, Franci Pusavec

www.elsevier.com/locate/wear

PII: S0043-1648(16)30745-1

http://dx.doi.org/10.1016/j.wear.2016.12.006 DOI:

Reference: WEA101847

To appear in: Wear

Received date: 13 June 2016 Revised date: 3 December 2016 Accepted date: 6 December 2016

Cite this article as: Radoslaw W. Maruda, Grzegorz M. Krolczyk, Eugene Feldshtein, Piotr Nieslony, Bozena Tyliszczak and Franci Pusavec, TOOL WEAR CHARACTERIZATIONS IN FINISH TURNING OF AISI 1045 **CARBON STEEL FOR** CONDITIONS, Wear **MQCL** http://dx.doi.org/10.1016/j.wear.2016.12.006

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

TOOL WEAR CHARACTERIZATIONS IN FINISH TURNING OF AISI 1045 CARBON STEEL FOR MQCL CONDITIONS

Radoslaw W. Maruda^a, Grzegorz M. Krolczyk^{b*}, Eugene Feldshtein^a, Piotr Nieslony^b, Bozena Tyliszczak^c, Franci Pusavec^d

^aFaculty of Mechanical Engineering, University of Zielona Gora, 4 Prof. Z. Szafrana street, 65-516 Zielona Gora, Poland ^bDepartment of Manufacturing Engineering and Production Automation, Opole University of Technology, 76 Proszkowska street, 45-758 Opole, Poland

^cDepartment of Chemistry and Technology of Polymers, Cracow University of Technology, 24 Warszawska street, 31-155 Cracow, Poland

^dFaculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia

Abstract

This study presents analysis of tool wear of P25 cemented carbide inserts in finish turning of AISI 1045 carbon steel for different cooling conditions: dry cutting, minimum quantity cooling-lubrication (MQCL) and MQCL with phosphate ester-based EP/AW additive. It was proven that the wear of the inserts using MQCL + EP/AW method is reduced by about 40% compared to dry cutting and about 25% compared with MQCL. The improvement was proved to be a consequence of phosphate ester-based tribofilm formation. Additionally, SEM analysis revealed that active compounds contained in this tribofilm reduce the rate of adhesion and diffusion of tool wear processes. Further, analyzed is also the droplet diameter which has turned out to also have significant impact on wear. It was shown that droplet diameter has the greatest effect on the wear rate. Smaller droplets provide the better penetration into the cutting zone, especially for micro-machining applications. Thus, this work shows that MQCL medium as well as its proper application via generation of controllable mist can provide significant improvements in cutting tool wear rate and/or productivity of cutting tool.

Keywords

Minimum quantity cooling-lubrication, Tool wear, Droplet size and distribution, Additives EP/AW, Tribofilm

Nomenclature

 a_p Depth of cut (mm)

 $A_{tot.drop.surf}$ Relative total wetting area on the surface by all droplets per 1 mm² (%)

AW Anti-wear

 D_{avg} Avg. droplets dia. on the contact surface (μ m) Droplet diameter on the contact surface (μ m)

EP Extreme pressure

E Mass flow of active medium (g/h)

f Feed rate (mm/rev)

 v_E Speed of the jet at the nozzle outlet (m/s)

KB Distance from the cutting edge to the back crater contour (mm)

KE Radial displacement of the tool comer (mm)

l Distance of the nozzle from the cutting zone (m)

MRV Material removed volume (mm³)

KT Crater depth (μm)

MQL Minimum quantity lubrication
MQCL Minimum quantity cooling lubrication

P Air volumetric flow (1/min)

n Number of active medium droplets in the MQCL spray jet per unit of surface area (no./mm²)

 v_c Cutting speed (m/min)

Download English Version:

https://daneshyari.com/en/article/4986767

Download Persian Version:

https://daneshyari.com/article/4986767

<u>Daneshyari.com</u>