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a b s t r a c t

The theoretical and experimental analysis described in this paper demonstrate a simple systematic
procedure to determine the contact parameters between a spherical impactor and an elastic half space
via impact tests. Two main contact parameters were measured at different velocities of impact, that is the
time duration of contact and the maximum normal contact force. A general nonlinear contact model
based on power law is used to extract the contact stiffness and frequency of contact resonance from these
two main contact parameters. Experimental results were obtained and compared for three steel samples
with different hardness numbers and impacted by different sphere diameters of 2.0, 2.5 and 3.5 mm to
investigate the limits of elastic deformation. Effect of the used sphere diameter on the contact para-
meters are shown. The test results show that the adopted model using independently measured material
data can predict the contact parameters due to hard sphere impact with elastic half space. The general
trend shows the increase of contact stiffness with the sphere diameter but the limits of elastic regime
decrease.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Impact of hard steel on massive elastic half space has long been
used to study the dynamics of elastic and plastic contact [1–5].
Hertz theory was the backbone of most dynamic elastic impact
models. The main difference between static and dynamic contact
problems is the time duration of contact. Hertz theory [6,7] is
based on assumption of fully elastic impact while most impacts
are actually not fully elastic. Considering elastic and plastic contact
models are more complicated than the contact law presented by
Hertz [8,9]. Johnson [10] has shown that the response of an elastic
half-space to dynamic impact of a rigid body to its surface can be
modeled as a mass-spring –dashpot system. Much work discussed
the relationship between the contact stiffness and the contact
coefficients defined by Hertzian contact laws via acoustic emission
[11,12] or vibration analysis [13] due to impact test. Contact
parameters such as surface displacement, contact time and impact
force due to collisions of steel spheres with an aluminum thick
plate at moderate speed have been theoretically calculated via an
elastoplastic model and experimentally verified using acoustic
emission technique [12]. Elastoplastic contact models have been
presented through analytical and experimental analysis of impact
between a solid striker and steel or composite half-space [14–17].

Xiao et al. [18] presented a general contact stiffness model which
has a force deflection characteristic with an arbitrary rational
positive power to study the free vibration of an elastic sphere on a
flat rigid surface.

In this paper, an elastic-plastic model is presented via a general
nonlinear contact model. This model shows that the three most
relevant parameters for all models of impact (for n41) are the
speed of impacts vo, the contact time tc, and the maximum normal
force of contact Fn. A simple procedure for using measured data of
time duration-impact velocity relationship to determine contact
parameters is presented. A very light piezoelectric force transducer
is used to measure the normal contact force induced by steel
spheres having different diameters and striking steel plates at
different impact velocities. It is shown that contact parameters like
contact stiffness, elastic normal approach, contact frequency and
contact size at yielding can be obtained using the measurements
of the temporal force signals at different speeds of impacts. Effects
of sphere diameter, and material hardness on yielding conditions
of the plate material are reported.

2. Elastic-plastic impact model

Consider a rigid sphere of mass m and diameter d¼2R whose
contact with an elastic half-space is idealized by a dashpot and
spring as shown in Fig. 1. The distance y (the approach) which
represents the maximum relative compression between the
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sphere and half-space can be expressed as:

( )= + − ¨ = ¨ − ¨ ( )y y R y and y y y, 11 2 1 2

Assuming nonlinear elastic force,

= ( )F ky 2n

It is useful to mention that the positive exponent n of the
elastic force in Eq. (2) has different values related to the con-
sidered physical systems. For instance, n¼1.5 for a rigid sphere in
contact with a smooth elastic half-space [8], n¼2 for an elastic
conical indenter in contact with a rigid flat surface [19], while it
ranges from 2.2 to 3.5 for pianos hammers [20].

Applying Newton's second low gives:

( )¨ + ( ) = ( )my t ky t 0 3n

where k is a constant which depends on the geometry and ma-
terial properties of both

the sphere and the half-space and it has the unit (N m�n).
The elastic deformation y(t) can be obtained by first direct in-

tegration of Eq. (3) as:
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If tn is the time of maximum compression and yn is the max-
imum displacement, therefore at t¼tn, y¼yn and dy/dt¼0, yn can
be obtained from Eq. (4) as:
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Eq. (5) shows that the maximum displacement yn is a function
of velocity of impact. The second indirect integration of Eq. (4)
leads to the time tn, where:
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The solution is given (Appendix) as:
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2.1. Contact time – velocity dependence

The relationship between the tc and v0 can be obtained by
eliminating yn between Eqs. (5) and (6); i.e.,
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It is useful to mention that at n¼1 (linear model), the time of
contact is independent of the velocity of impact and is simply gi-
ven as:

π
λ

=tc

Only in this case, λ can be defined as the angular frequency of

contact resonance. Moreover, for n¼1.5, and λ =
*E R
m

2 4
3

(Hertz

model) with sphere mass π ρ=m R4
3

3 , ρ is sphere density, effective

modulus of elasticity *=
ν( − )

E E

2 1 2 and ν is Poisson’s ratio, Eq. (7) has

the form:
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Thus, for general nonlinear model (n41) the time of contact is
velocity dependent. Fig. 2 shows the variation of the contact time
with the velocity of impact at different values of the exponent n
from Eq. (7).

It is shown that the time duration of contact increases with
power exponent n irrespective of the value of impact velocity.

Using also Eq. (7), the effect of contact constant k on the contact
time-velocity relationship is shown in Fig. 3 at constant mass m
and exponent n. It is shown that the contact time tc decreases with
increase of k.

2.2. Contact stiffness and force displacement relationship

At maximum displacement yn, Eq. (2) has the form:

*= * ( )F ky 9n

where Fn is the maximum normal force of contact.
Differentiation of Fn in Eq. (9) w.r.t. yn results in contact stiff-

ness as:
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Fig. 4 shows the variation of the normal contact stiffness with
normal force at different values of the exponent n from Eq. (10). It
is shown that at a constant normal force of contact, the contact

Fig. 1. Contact model of impact.

Fig. 2. Effect of exponent n on the contact time-velocity relationship (m¼0.1 g,
k¼5 GN/mn).

H.A. Sherif, F.A. Almufadi / Wear 368-369 (2016) 358–367 359



Download English Version:

https://daneshyari.com/en/article/4986913

Download Persian Version:

https://daneshyari.com/article/4986913

Daneshyari.com

https://daneshyari.com/en/article/4986913
https://daneshyari.com/article/4986913
https://daneshyari.com

