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The Asymptotic Numerical Method (ANM) is a family of algorithms for path following problems based on the
computation of truncated vectorial series with respect to a path parameter “a” [B. Cochelin, N. Damil, M.
Potier-Ferry, Méthode Asymptotique Numérique, Hermès-Lavoisier, Paris, 2007]. In this paper, we discuss
and compare three concepts of parameterizations of the ANM curves i.e. the definition of the path parameter
“a”. The first concept is based on the classical arc-length parameterization [E. Riks, Some computational
aspects of the stability analysis of nonlinear structures, Computer Methods in Applied Mechanics and
Engineering, 47 (1984) 219–259], the second is based on the so-called local parameterization [W. C.
Rheinboldt, J. V. Burkadt, A Locally parameterized continuation, Acm Transaction on mathematical Software,
9 (1983) 215–235; R. Seydel, A Tracing Branches, World of Bifurcation, Online Collection and Tutorials of
Nonlinear Phenomena (http://www.bifurcation.de), 1999; J. J. Gervais, H. Sadiky, A new steplength control
for continuation with the asymptotic numerical method, IAM, J. Numer. Anal. 22, No. 2, (2000) 207–229] and
the third is based on a minimization condition of a rest [S. Lopez, An effective parametrization for asymptotic
extrapolation, Computer Methods in Applied Mechanics and Engineering, 189 (2000) 297–311]. We
demonstrate that the third concept is equivalent to a maximization condition of the ANM step lengths. To
illustrate the performance of these proposed parameterizations, we give some numerical comparisons on
nonlinear elastic shell problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The asymptotic numerical method (ANM) is a family of algorithms
for path following problems [6]. The principle is simply to expand the
unknown (U, λ) of a nonlinear problem R(U, λ)=0 in power series
with respect to a path parameter “a”:

ðUðaÞ;λðaÞÞ = U j
;λj

� �
+ ∑

N

i=1
ai Ui;λið Þ ; a∈ 0; amax½ � ð1Þ

where (U j, λj) is a known and regular solution corresponding to a=0
and N is the truncated order of the series. The interval of validity
[0, amax] is deduced from the computation of the truncated vectorial
series Eq. (1). So, the step lengths are computed a posteriori by the
two following estimations of amax which have been proposed in [4,6]:

amax = �d
j jU1 j j
j jUN j j

� �
1

N−i ð2Þ

amax = �r
1

j jFnlN+1 j j

 !
1

N+1 ð3Þ

where �d and �r are given tolerance parameters, FN+1
nl are the ANM

right hand sides [6] (see Eq. (5)) and ||.|| indicates the standard norm
associated with the scalar product. In the first estimation (2), we
require that the last term of the truncated series is very small as
compared to the first term with a maximal ratio �d. In the second
estimation (3), we require that the norm of an approximation of the
residual, ||R(U(a), λ(a))||≃aN+1||FN+1

nl ||, is lower than a given toler-
ance �r. By using the evaluation of the series at a=amax, we obtain a
new starting point and define, in this way, the ANM continuation
procedure. This continuation method has been proved to be an effi-
cient method to compute the solution of nonlinear partial differential
equations [1–6,9,10,17,19,20].

The step lengths depend on the definition of the path parameter
“a” and we must add an auxiliary equation to define this parameter.
The importance of a good choice of the path parameter, in the
asymptotic expansions for structural mechanics, has been discussed
for the first time in [27]. In the ANM continuation [6], we often used
the classical pseudo arc-length parameterization (see Eq. (8)). This
parameterization is generally used in the Newton-Raphson methods
[7,8,11,15,16,18,21,25,28].
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Another choice, the local parameterization [22,23,25,26] has been
examined by Gervais and Sadiky [12,24] in the context of the ANM
(see Eq. (10) or (11)).

Lopez [18] proposed a predictor–corrector algorithm. The predic-
tor and the corrector are performing by using asymptotic expansions
with small orders. At each order, the parameterization has been based
on the minimization of the norm of residual.

In this paper, we discuss about the parameterization in the ANM
which can lead to larger step lengths Eq. (2) or (3). Firstly, we intro-
duce some techniques to define local parameterizations. With these
local parameterizations, the auxiliary equations are the same as the
one used in [12,13,22,23,25,26].

Secondly, we propose the parameterizations based on the termsUp

or on the right hand sides Fp+1
nl . At each order p, we compute the

unknown (Up, λp) by the linear system (5) and aminimal condition on
the norm ||Up|| or as in Lopez [18], on the norm ||Fp+1

nl ||. There is a
difference of one order of truncation between these two parameter-
izations. Up is the solution of the problem at order p and Fp+1

nl is the
right hand side of the problem at order p+1. One can demonstrate
that, at each order, the parameterizations based on the minimal
condition on the norm ||Up|| and on the norm ||Fp+1

nl || maximize the
ANM step lengths defined, respectively, by Eqs. (2) and (3). A
mathematical connection between the parameterization based on the
minimal condition on the norm ||Up|| and a sort of pseudo arc–length
parameterization will be given.

In the Section 2, we remind the basis of ANM. In the Section 3,
we introduce some methods to define the auxiliary equation cor-
responding to local parameterization. In the Section 4, we propose
new parameterizations based on a minimal condition of the rest Up

or of the rest Fp+1
nl . In the Section 5, these strategies of the choice of

the parameterizations are applied on some examples from nonlinear
elastic shells.

2. Parameterization with respect to arc–length parameter

Let us consider the following class of nonlinear quadratic problems:

RðU;λÞ = LðUÞ + Q ðU;UÞ−λF = 0 ð4Þ

where L(.) and Q(., .) are linear and quadratic operators, F is a given
vector and R is the so-called residual vector. In the case of thin elastic
shell equilibrium equations, the unknowns are U=(u, S) and λ; u is
the displacement and S is the second Piola-Kirchhoff stress tensor and
λ is the load parameter. In this paper, we limit our study to the
quadratic framework Eq. (4). More difficult problems can be found in
[1,2,6,20]. In these papers, some ideas have been proposed to
transform strongly nonlinear problems into quadratic ones. The
ANM has been proved to be an efficient method to compute solution
path of Eq. (4). The first step is the expansion of the unknown (U, λ)
with respect to a path parameter “a” as in Eq. (1). In this way, the
Eq. (1) defines the solution branch j (one step of the ANM). By in-
troducing Eq. (1) into Eq. (4) and equating like powers of “a”, we
obtain the following set of linear problems:

Lt Up

� �
−λpF = −∑p−1

r=1Q Ur ;Up−r

� �
= Fnlp ð5Þ

in the unknowns (Up, λp), where Lt(.)=L(.)+2Q(U j, .) is the tangent
operator. For p=1, we have F1nl=0 and Eq. (5) defines the tangent
vector (U1, λ1) at (U j, λj) point. The next step is the computation of the
terms (Up, λp). The problems Eq. (5) are discretized by a classical finite
element method. Let us note that these problems have the same
tangent stiffness matrix and hence the terms (Up, λp) (1≤p≤N) of
Eq. (1) are computed by inverting only one stiffness matrix. The last
step is the continuation technique [4,6]. The end of the branch j is the
starting point of the next branch j+1.

The general solution of Eq. (5) can be written:

Up = λp Û1 + Unl
p ð6Þ

with

Û1 = L−1
t F and Unl

p = L−1
t Fnlp : ð7Þ

To solve system (5) for p≥1, we must add an auxiliary equation
to define the path parameter “a”. Various choices are possible; the
most used in the ANM algorithms [6] is a Riks pseudo arc–length
parameterization (PAL) [21]:

a = bV;TN = u−u j
� �

:u1 + α λ−λj
� �

λ1 ð8Þ

where b ., .N is a scalar product, T= t(u1, λ1) is the tangent vector at
the starting point (U j, λ j), V=(u−u j, λ−λj) and α=1 or α=0. The
system (Eqs. (5) and (8)) is solved by Eq. (6) and

λ1 = F
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α + û1:û1

q ;λp = − û1:û
nl
p

α + û1:û1
= −λ1u1:u

nl
p : ð9Þ

The sign ± depends on the choice of the orientation. In this
end, we choose the same sign as the one of the scalar product bT⁎( j),
T⁎( j−1)N , where T⁎( j) and T⁎( j−1) are the tangent vector nor-
malized at the starting point of the branch j and the branch j−1,
respectively.

Other choices of the auxiliary equation are discussed in Section 3.

3. Local parameterizations

Another way to parameterize the branch is to use any component
of the vector V as a parameter [26]:

a = bV; eiN ð10Þ

where ei is the ith vector of the canonical basis of ℜn+1, n is the de-
gree of freedom of the discretized structure, (i=1, ..., n+1). The case
i=n+1 corresponds to a load parameter, the others correspond to a
displacement parameter. The index “i” and hence the parameteriza-
tion Eq. (10) has a local nature; i.e. the component “i” should be valid
for the branch j and may be changed for the next branch j+1. With this
local parameterization, the auxiliary Eq. (8) is replaced by Eq. (10). In
the local parameterization used in [12,22], the auxiliary Eq. (8) is
replaced by:

a b T ; ei N = bV; ei N ð11Þ

where TT = F 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + û1⋅û

p
1

û1
1

� �
is the tangent vector normalized at

the point (u j, λj). The vector of projection ei must verify the relation
bT⁎, eiN≠0.

Hence, the system (Eqs. (5) and (10)) is solved by Eq. (6) and

λ1 =
1

bv̂1; eiN
= ; λp = −λ1

bvnlp ; eiN
bT; eiN

ð12Þ

with

v̂1=
t û1;1
	 


and vnlp = t unl
p ;0

� �
ð13Þ

and the system (Eqs. (5) and (11)) is solved by Eq. (6) and

λ1 =
bTT; eiN
bv̂1; eiN

= F
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + û1:û1
q ;λp = −λ1

b vnlp ; eiN
b T; eiN

: ð14Þ
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