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This paper discusses stabilization of an optimization procedure to determine an appropriate semivariogram
parameter using the empirical semivariogram for Kriging-based approximation. From a viewpoint of a
computational cost for constructing a surrogate model, a semivariogram fitting approach using the empirical
semivariogram can be usable for the parameter estimation of a semivariogram function. However, instability of
the optimization procedure for determination of the semivariogram parametermay be observed in some cases
and it causes to generate an invalid surrogate model.
For this problem, a simple technique for stabilization of the optimization for the parameter determination is
proposed in this paper. The proposed approach employs a normalization technique of input data with respect
to values of variables and an objective function. The proposed method is applied to some numerical examples,
and the numerical results illustrate validity and effectiveness of the proposed method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Kriging method has been widely used for approximation of a
response function, and it is used for approximate optimization in an
engineering field such as structural optimization or a part of an
optimization strategy in recent works [1–5]. Approximation with noisy
or inaccurate data set has been attempted using the Kriging-based
approach [6–11], and it will be helpful for approximate optimization in
an engineering field. Also, Kriging approximation is used for some
numerical analyses in mechanics [12–14].

A surrogate model using the Kriging method can be constructed
using some kinds of semivariogramparameter identification such as the
most likelihood estimator (MLE) [15] or fitting semivariogram function
[16]. The latter approach uses a primitive semivariogram function,
which is called as the empirical semivariogram, as a target function of
the parameter identification. This approach is called as “empirical
semivariogram-based approach” in this paper.

Simpson et al. reported that the MLE-based Kriging method re-
quires a high computational cost for constructing a surrogate model
[17]. On the other hand, the empirical semivariogram-based approach
enables to reduce the computational cost.

However, in using the empirical semivariogram-based approach, an
inappropriate approximated result is sometimes observed. It is con-
sidered that this fact may be caused by instability of the optimization

process in the parameter identification, and a reason of the instability or
a way for improvement of the stability should be discussed.

For this problem, a reason of the instability is discussed from a
viewpoint of the semivariogram parameter determination process for
the Kriging-based approximation in this paper. At first, outline of the
Kriging method is introduced. Next, instability of the parameter
estimation and the proposed method for improving the parameter
determination process are discussed. Some numerical examples
illustrate validity and effectiveness of the proposed method.

2. Kriging-based approximation

In this paper, the ordinary Kriging method is used for approxima-
tion. The empirical semivariogram-based approach is used for
determination of semivariogram parameters. The Kriging method is
a spatial prediction method that minimizes variance of the prediction
error. A linear predictor of Ẑ(s0) can be computed as

Ẑ s0ð Þ = w s0ð ÞTZ ð1Þ

where w={w1,w2,⋯,wn}T is a weighting coefficient vector, Z={Z(s1),
Z(s2),⋯, Z(sn)}T is an observed value vector which is obtained as
sampling values at the nth known locations s1, s2 ⋯, sn in a solution
space S, Ẑ(s0), which shows an estimated value of Z(s0) at s0∈S, which
is the point where we want to estimate the value of the function. The
estimated value Ẑ(s0) can be calculated by the sum of the weighted
sampling values at each location.
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The weighting coefficient w can be calculated by Eq. (2).

w = Γ−1γ0 +
1−1

TΓ−1γ0

1TΓ−11

 !
Γ−1

1 ð2Þ

where 1={1, 1, ⋯, 1}T. We can use a cheaper form for the estimation
instead of Eqs. (1) and (2) as

Ẑ s0ð Þ = γT
0gF +

1
b

1− γT
0g1
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1
T
gF ð2′Þ

where gF=Γ−1Z, g1=Γ−11 and b=1TΓ−11. Γ and γ* in Eq. (2) are a
coefficient function matrix and vector, which are expressed as

Γ = γ si−sj

� �n o
ij

ð3Þ

γ0 = γ s1−s0ð Þ; ⋯;γ sn−s0ð Þf gT ð4Þ

where γ is a semivariogram function. Several types of semivariogram,
for example a sphere type or an exponential type, have been
proposed. In this study, the Gaussian-type semivariogram model
with the nugget effect, which is expressed by Eq. (5), is adopted.

γ hi;βð Þ = β0 + β1 1− exp − OhiO
β2

� �2� �� 	
:OhiO≠0

0 :OhiO= 0

8><
>: ð5Þ

where h is a vector, which is expressed by the difference between
each observed location si and estimating location s. β0, β1≥0, β2N0
are themodel parameters. β0 is called as the nugget effect, β1 is the sill
and β2 is the range. Generally β0 is not used for a set of accurate data.

In order to determine the parameter β, the empirical-based
approach is used in this study. It is assumed that an empirical
semivariogram can be expressed as follows [18]:

γ̂ hð Þ = 1
2jNkj

∑
Nk

Z sið Þ−ZðsjÞ
� �2 ð6Þ

where Nk is the number of samples in a data set that satisfies

jsi−sjj ∈ Rk−1;Rkð �; 0bRk−1bRk∈R
1
: ð7Þ

Todetermine the parameterβ, Cressie's criterion (Cressie [19]),which
is considered as a robust and efficient estimator for changes in the scale of
datausing this typeof semivariogram, is used. TheCressie'sweighted least
squares criterion, which is to be minimized for determination of the
optimum semivariogram parameters, can be written as

WLS βð Þ = ∑
K

k=1

jNkj
γ hk;βð Þ γ̂ hkð Þ−γ hk;βð Þ
 �2

: ð8Þ

3. Instability of semivariogram parameter estimation using the
empirical semivariogram

In using the empirical semivariogram-based approach with the
Cressie's criteria, a computational cost for determination of the
semivariogram parameter will be cheaper than the most likelihood
estimator (MLE) based approach. However, instability of the optimi-
zation process to determine a set of appropriate semivariogram
parameters will be observed in some cases of using the empirical
semivariogram-based approach. In this section, the instability of the
parameter estimation and an estimated result using an invalid
semivariogram parameter are introduced.

As an example, the Kriging method is applied to construct a
surrogate model for the following simple mathematical function.

f0 xð Þ = 2x2 −100bxb100ð Þ ð9Þ

The exact surface, samples and validly estimated surface are
illustrated in Fig. 1(a). If the parameter estimation process is suc-
cessfully completed, an appropriate surrogate model can be obtained
as shown in Fig. 1(a). However, instability of the parameter

Fig. 1. An example of valid and invalid approximated results using the empirical
semivariogram-based ordinary Kriging method.

Fig. 2. Results of success or failure to obtain a valid approximationwith using each set of
semivariogram parameter as initial values.
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