Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/02638762)

Chemical Engineering Research and Design

journal homepage: <www.elsevier.com/locate/cherd>

Reduction of SO2 to elemental sulfur with H2 and mixed H2/CO gas in an activated carbon bed

*Tai Feng a, Mengjia Huo b, Xiqiang Zhao ^a***,∗***, Tao Wang a, Xiao Xiaa, Chunyuan Ma^a***,[∗]**

^a *National Engineering Laboratory of Coal-Fired Pollution Reduction, Shandong University, PR China*

^b *SEPCO Electric Power Construction Corporation, PR China*

a r t i c l e i n f o

Article history: Received 6 December 2016 Received in revised form 9 March 2017 Accepted 13 March 2017 Available online 21 March 2017

Keywords: Sulfur dioxide reduction Hydrogen Elemental sulfur Activated carbon Catalysis

A B S T R A C T

Experiments and thermodynamic equilibrium calculations were carried out on a H_2 -SO₂ system. The effects of temperature, H_2/SO_2 ratio, and retention time on SO_2 reduction in an activated carbon bed were studied. The equilibrium calculations showed elemental sulfur to be the major S-containing product of SO_2 reduction at low H_2/SO_2 ratios. However, when the $H₂/SO₂$ ratio was greater than three, the calculations predicted that SO₂ would be completely reduced to H_2S with elemental sulfur completely absent from the reduction products. The experimental results showed that the starting temperature for reduction of SO_2 with H_2 is 600 ℃. In the presence of activated carbon, the starting temperature decreased and an obvious increase in the SO_2 conversion and S yield was achieved at temperatures below 800 °C. The experimental results showed a lower SO_2 conversion and higher S selectivity than those predicted by the equilibrium calculations because equilibrium was not achieved under the experimental conditions. Higher H_2/SO_2 ratios and longer retention times were beneficial to SO_2 conversion. They also improved the S yield initially; however, subsequently, the yield decreased because an increase in S-containing byproduct formation after complete SO₂ conversion was achieved. The activity of mixed $H₂/CO$ gas for SO₂ reduction was also probed. CO displayed a higher SO_2 reduction activity in comparison with H_2 . COS was the major S-containing byproduct at lower temperatures, while H2S was the main byproduct at 800 °C. At a H₂/CO ratio of 1, the optimum SO₂ conversion and S yield achieved were 99.3% and 79.3%, respectively, at 700 °C with a $(H_2 + CO)/SO_2$ ratio of 2.5.

© 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Sulfur dioxide is the most important precursor of acid rain and one of the major contaminants generated from coal-fired power plants. Currently, the limestone-gypsum wet flue-gas desulfurization (WFGD) system is the most widely used method for removal of $SO₂$ from power-plant exhaust fumes. However, the gypsum byproduct of limestone-gypsum WFGD is often stockpiled ([Liu](#page--1-0) et [al.,](#page--1-0) [2010\).](#page--1-0) Desulfurization by adsorption on activated carbon is among a variety of alternative FGD technologies which can achieve sulfur recycling ([Rubio](#page--1-0) et [al.,](#page--1-0) [1998;](#page--1-0) [Liu](#page--1-0) et al., [2003\).](#page--1-0) Commonly, SO_2 adsorbed on activated

carbon can be regenerated through heating or water scrubbing and recycled into sulfuric acid and liquid SO2. However, the applications of liquid SO₂ are relatively limited and sulfuric acid is difficult to be stored and transported. Elemental sulfur is easier to be stored and transported, and it can be used as a raw material for almost all Scontaining products ([Bejarano](#page--1-0) et [al.,](#page--1-0) [2001;](#page--1-0) [Humeres](#page--1-0) et [al.,](#page--1-0) [2002;](#page--1-0) [Cha](#page--1-0) [and](#page--1-0) [Kim,](#page--1-0) [2001;](#page--1-0) [Bejarano](#page--1-0) et [al.,](#page--1-0) [2003\).](#page--1-0) Therefore, it is the ideal form of recovered sulfur.

Hydrogen is a common reducing agent widely utilized in various industrial sectors [\(Liu](#page--1-0) et [al.,](#page--1-0) [2016;](#page--1-0) [Tahir](#page--1-0) et [al.,](#page--1-0) [2015\).](#page--1-0) Recently, there has been a great deal of research on the reduction of $SO₂$ to elemental sulfur

[http://dx.doi.org/10.1016/j.cherd.2017.03.014](dx.doi.org/10.1016/j.cherd.2017.03.014)

[∗] *Corresponding authors at*: National Engineering Laboratory of Coal-Fired Pollution Reduction, Shandong University, Jinan 250061, PR China.

E-mail addresses: zxq@sdu.edu.cn (X. Zhao), sdetechym@163.com (C. Ma).

^{0263-8762/©} 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

using H_2 , with most studies focused on the development of catalysts. [Ban](#page--1-0) [et](#page--1-0) [al.](#page--1-0) [\(2001\)](#page--1-0) achieved 90% SO_2 conversion with H_2 and a Ru/Al₂O₃ catalyst at 500 °C. [Ishiguro](#page--1-0) et [al.,](#page--1-0) [2002](#page--1-0) used Ru/TiO₂ as a SO_2 reduction catalyst and reported a 90% elemental sulfur yield at 300 ◦C. Murdock and Atwood's research ([Murdock](#page--1-0) [and](#page--1-0) [Atwood,](#page--1-0) [1974\)](#page--1-0) on SO_2 reduction with hydrogen over an activated bauxite catalyst indicated that the SO2 reduction process has two steps; the first step was reduction of $SO₂$ to elemental sulfur by $H₂$ and the second step was elemental sulfur reduction to H₂S by H₂. [Paik](#page--1-0) [and](#page--1-0) [Chung,](#page--1-0) [1995](#page--1-0) and Paik et [al.,](#page--1-0) [1997](#page--1-0) found that Co-Mo/Al₂O₃ displayed a high catalytic activity towards SO_2 reduction, with an elemental sulfur yield above 80% achieved using a H_2/SO_2 molar ratio of three at 300 ◦C. They also found that the mechanism of Co-Mo/Al₂O₃ catalyzed SO₂ reduction proceeded via a H₂S intermediate; SO_2 was first reduced to H_2S on pre-sulfided Co-Mo/Al₂O₃, followed by a Claus reaction of the H_2S with SO_2 to produce elemental sulfur on the alumina support.

Activated carbon could be utilized as catalyst or catalyst support because of its large specific surface area, high degree of porosity, and surface functional groups ([Xing](#page--1-0) et [al.,](#page--1-0) [2008;](#page--1-0) [Han](#page--1-0) et [al.,](#page--1-0) [2016\).](#page--1-0) In previous research, we found that activated carbon was catalytically active toward SO_2 reduction by CO [\(Feng](#page--1-0) et [al.,](#page--1-0) [2016\).](#page--1-0) Meanwhile, the activated carbon was also the common reducing agent for SO_2 reduction ([Humeres](#page--1-0) et [al.,](#page--1-0) [2002;](#page--1-0) [Cha](#page--1-0) [and](#page--1-0) [Kim,](#page--1-0) [2001;](#page--1-0) [Wang](#page--1-0) et [al.,](#page--1-0) [2007\).](#page--1-0) However, the research on SO_2 reduction with H_2 in activated carbon bed has never been reported. In addition, H_2 is a primary component of the gas released during the preparation of activated carbon by fast pyrolysis of coal and, if successfully managed, this combination would provide a sustainable process for converting $SO₂$ to elemental sulfur ([Zhang](#page--1-0) [et](#page--1-0) [al.,](#page--1-0) [2014;](#page--1-0) [Zhang](#page--1-0) et al., [2016;](#page--1-0) [Li](#page--1-0) et al., [2008\).](#page--1-0) Therefore, studying SO₂ reduction by H_2 in an activated carbon bed is essential and could be of great significance.

In this work, theoretical calculations were performed to determine the equilibrium thermodynamics of the H_2 -SO₂ system and the influence of factors such as temperature, $H₂/SO₂$ ratio and retention time on SO2 reduction in an activated carbon bed were evaluated experimentally. As CO is also a primary component of coal-pyrolysis gas, $SO₂$ reduction by a mixed $H₂/CO$ gas was also probed.

2. Experimental section

2.1. Materials

A commercial coal-based activated carbon was used as the material in this study. Before experiments, the activated carbon was dried at 105 ◦C in an oven for 24h, then crushed and sieved to a particle size of 0.70–0.84mm (20–25mesh). In order to avoid reactions between volatile components and $SO₂$ that may influence the experimental results, the activated carbon was heated at 1050 °C for 30 min under N_2 gas to eliminate tars and volatile components in advance ([Ratcliffe](#page--1-0) [and](#page--1-0) [Pap,](#page--1-0) [1980\).](#page--1-0) Some characteristics of this activated carbon are presented in Table 1.

2.2. Reaction system

A fixed-bed reactor system was employed for $H_2 + SO_2$ reaction tests, as shown in [Fig.](#page--1-0) 1. A quartz tube of 20mm diameter was fixed vertically in a tubular furnace fitted with an automatic temperature control. The activated carbon was placed in the center of the tube and near a thermocouple used for measuring temperature to ensure a uniform and constant temperature was obtained. SO_2 and H_2 were mixed and diluted in N2 using mass flow controllers (Beijing Sevenstar Company, CS200). The feed gas flow rate was 300 ml/min and the SO_2 concentration was 5 vol % for all runs. The outlet gas passed through a coiled condenser and a filter to separate the elemental sulfur and steam formed in the reaction. The outlet gas after condensing and filtering was collected by gas sampling bags, and then detected by gas analysis system immediately.

The H_2 , CO₂, CO and N_2 gases among the gaseous products were analyzed by a refinery gas analyzer (PerkinElmer PE CLAUSE 500 GC). Moreover, the SO_2 , H_2S and COS were analyzed by a gas chromatography–mass spectrometry (GC–MS) analyzer (Thermo ISQ) employing a GC-Carbonplot column $(30\,\text{m} \times 0.32\,\text{mm} \times 3\,\text{\mu m})$. Injection was made in splitless mode with an injection volume of 1ml and an injector temperature of 230 ◦C. The carrier gas, helium, was controlled at 1.0ml/min. The column oven temperature was programmed to increase from an initial temperature of 40 ◦C, which was maintained for 2min, followed by an increase to 120 ◦C at 5 ◦C/min, which was maintained for 3min. The mass spectrometer was operated in elector impact (EI) mode with an ionization voltage of 70 eV. The ion source temperature was 230 ℃ and the transition line temperature was 250 \degree C. SO₂, H₂S and COS were the only S-containing products detected in the present study.

3. Results and discussion

3.1. Thermodynamic equilibrium calculations on a H2-SO2 system

3.1.1. Thermodynamic equilibrium prediction of product composition

The Equilib module of the thermodynamic software Factsage 6.4, which is based on Gibbs free energy minimization, was utilized to calculate the thermodynamic equilibrium compositions of the H_2 -SO₂ system at various temperatures and H2/SO2 molar ratios. The Factsage software predicts all reaction products but only the products with a mole fraction above 10−⁴ are discussed in this work.

The primary equilibrium products of $SO₂$ reduction by $H₂$ contain H_2 , H_2O , H_2S , SO_2 and elemental sulfur. The elemental sulfur exists in the form of S_x where the atom number, x, varies from 1–8. The atom number highly depends on temperature; at higher temperatures, S_2 is the major form of elemental sulfur while polyatomic molecules, with x from 6 to 8, are dominant at lower temperatures. For convenience of analysis, all elemental sulfur allotropes are expressed as S_1 . The mole fractions of the other two S-containing products, SSO and H_2S_2 , were predicted to be minor.

Download English Version:

<https://daneshyari.com/en/article/4987042>

Download Persian Version:

<https://daneshyari.com/article/4987042>

[Daneshyari.com](https://daneshyari.com)