Contents lists available at ScienceDirect

Chemical Engineering Research and Design

journal homepage: www.elsevier.com/locate/cherd

A continuum model of stresses in a vertical silo with a flow channel in the vicinity of the wall, using the principal stress cap surface approach for the bulk solids

A.J. Matchett^{a,*,1}, P.A. Langston^b, D. McGlinchey^c

^a University of Teesside, United Kingdom

^b Faculty of Engineering, University of Nottingham, United Kingdom

^c School of Engineering, Glasgow Caledonian University, United Kingdom

ARTICLE INFO

Article history: Received 19 January 2017 Received in revised form 25 March 2017 Accepted 7 April 2017 Available online 18 April 2017

Keywords: Bulk solids Eccentric silo Yield Stresses Eurocode 1

ABSTRACT

Eurocode 1 (2006) gives design equations for eccentric stresses in silos, including flow channels adjacent to the wall. This has been modelled using the approach of Matchett et al. (2015, 2016).

- A three zone model was developed, consisting of:
- The flow channel.
- The transition zone.
- The bulk of the solids.

The flow channel and the transition zone were modelled by Janssen-type equations. The bulk was modelled by the principal stress cap approach.

- The transition zone is a complex region and has several purposes:
- 1. To shelter the low stress flow channel from the high stresses around.
- 2. To allow high principal stresses at the transition/bulk interface, within the yield locus.
- 3. To form a transition between the dynamic flow channel and the static bulk.
- 4. To allow transition from passive stress in the flow channel to active stress in the bulk.
- The model was calibrated against the data of Chen et al. (2007) for a full-scale silo, and described the data reasonably well, scaling axially and azimuthally.

Large experimental data sets are required to calibrate a model. Unfortunate data points cannot be arbitrarily rejected.

Further extensive, experimental data are needed to calibrate models.

© 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Matchett et al. (2015, 2016) describe how eccentric stresses in vertical, cylindrical silos were modelled. They used a "principal stress cap surface" approach, in which the geometry of the principal stress cap and principal stress paths in 3-dimensional space were assumed "a priori"—see Fig. 1. Seen from above, the principal stresses in the azimuthal direction describe circular stress paths in the horizontal plane.

In a symmetrical system, the circle would be centred about the centre of the silo, of radius r_2 , creating a series of concentric circles. In an asymmetrical system, the centre of the core, radius r_1 , was displaced a distance h, causing the circular stress paths to be compacted in the direction of displacement and expanded in the opposite direction. The

^{*} Corresponding author.

E-mail address: andymatt15@outlook.com (A.J. Matchett). ¹ Retired.

http://dx.doi.org/10.1016/j.cherd.2017.04.013

^{0263-8762/© 2017} Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

 R_2

Nomenclature

The notation used in Matchett et al. (2015, 2016) is used in	
this pape	er. Additional notation used specifically in this paper
is given l	pelow.
A _f	Flow channel zone cross section area (m ²)
A _t	Transition zone cross section area (m ²)
b _{Janssen}	Janssen coefficient (m ⁻¹)
CYFI	Conical Yield Function Index
d	Silo diameter (m)
Кf	Flow channel zone stress ratio: norizon-
17	tal/vertical
K _t	Iransition zone stress ratio: norizontal/vertical
ĸ _{tb}	used in horizontal force balance
1	Half chord length subtended by angle θ (m)
lo	Half chord length subtended by angle θ_{\triangle} tran-
-0	sition zone (m)
l _f	Flow channel half (m)
P _f	Flow channel half perimeter (m)
P _{fw}	Flow channel perimeter
r ₃	Flow channel radius (m)
θ	Angle subtended between the silo centre and
	a point at the bulk solid zone/transition zone
	boundary
θ_{o}	Angle subtended between the silo centre and
	the point where the bulk solid zone boundary
	meets the silo wall
μ	Internal coefficient of friction
$\mu \mathbf{w}$	Coefficient of wall friction
μ tw	Transition zone coefficient of wall friction
$\sigma \mathbf{fh}$	Flow channel horizontal stress (Pa)
σ fv	Flow channel vertical stress (Pa)
σ th	Transition zone horizontal stress (Pa)
σ thw	Transition zone horizontal wall stress (Pa)
σ tv	Transition zone vertical stress (Pa)
σ2b	Principal stress σ_2 transmitted across the tran-
	sition/bulk interface: boundary condition for
	the bulk zone (Pa)
τf	Flow channel internal shear stress (Pa)
τfw	Flow channel wall shear stress (Pa)
The notation used in the previous papers (Matchett et al., 2015,	
2016) is	given below:
a ₁	Relates projected circle radius R_1 to X $R_1 = a_1X + a_1'$
a_1'	Constant relating R_1 to X—see a_1 (m)
a ₂	Differential of projected circle centre $a_2 = \frac{\partial O_X}{\partial x}$
D	D/DX and D/DZ are differentials along the
	principal stress paths for changes in X & Z
	respectively
e ₁	Angle used in the calculation of R_2 (rad)
Е	Factor relating rotation in the horizontal plane
	to rotation on the λ -plane
h	Inner circle offset (m)
-	

- k Ratio of wall vertical to normal stress: Janssen model
- Ratio of $\sigma_1 \sigma_3$ at the wall Kw
- Conical Yield Function parameter м
- Inner circle radius (m) r1
- Outer circle (silo) radius (m) r2
- Radius of projected horizontal circle of princi- R_1 pal stress path (m)

(m) Value of R₂ at $\varepsilon_1 = 0$ (m) R₂₀ Value of R_2 at $\varepsilon_1 = \pi$ (m) $R_{2\pi}$ Arc length along Ψ_1 -line, seen as $\frac{\partial w_1}{\partial x}$ (m) w_1 Arc length along Ψ_2 -line, seen as $\frac{\partial w_2}{\partial z}$ (m) \mathbf{w}_2 х x-axis co-ordinate (m) х Intercept of projected horizontal surface with x-axis (m) Xo Minimum value of X (m) X_{max} Maximum value of X (m) x1, x2, x3 Local Cartesian co-ordinates coincident with directions of principal stress y-axis co-ordinate (m) у z-axis co-ordinate (m) z Ζ Value of z for the inner radius of the principal stress cap (m) Zo Value of Z at the point of boundary conditions (m) Angle of circular arc to normal at inner core βc (rad) Angle of circular arc to normal at wall (rad) βw Angle from x-axis in the horizontal plane (rad) $\varepsilon 1$ ε2 Angle from the vertical in the x-z plane at $\varepsilon_1 = 0$, rotated along the elliptical, principal stress path (rad) ε3 Angle from the vertical—slope of the principal stress cap surface as seen from ε_1 (rad) γ1 Slope of principal stress, σ_3 at the wall (Pa/m) Slope of principal stress, σ_1 at the wall $\nu 2$ Angle of internal friction. A nominal value of ф 30° has been used (rad) Characteristic slope of principal stress path ٦ ellipse when projected onto the x-z plane (rad) Coefficient of wall friction. A nominal value of μW 0.3 has been used Surcharge friction factor ŋ θlim Limiting value of wall arc angle (rad) ζlim Limiting value of plane of yield (rad) $\Psi 1$ Angle of Ψ_1 -line to x-axis on the horizontal plane (rad) Ψ2 Angle of Ψ_2 -line to vertical—principal stress path for changes in Z (rad) Bulk density of the bulk solid in the silo (Kg/m³) O $\sigma 1$ Principal stress in x_1 direction (Pa) σ2 Principal stress in x₂ direction (Pa) $\sigma 3$ Principal stress in x₃ direction (Pa)

Radius of principal stress cap at a general point

centre of the core is now the centre of stress, and a Cartesian axis was defined at this point, with x in the direction of displacement and z vertically. The centres of successive, azimuthal principal stress circles were also displaced, and a given circle can be characterised by the value X(upper case x), its value at the point where it crosses the x axis.

The vertical height was characterised by parameter Z(upper case z). This is the value of z at a characteristic point on the principal cap surface—in this case the value of z at the core. The principal stress cap surface describes a circular arc in the x-z plane, along the x-axis, with characteristic radii R_{20} in the positive sense of x and $R_{2\pi}$ in the negative direction of x. A given circle subtends an angle ε_2 to the vertical plane. ε_2 is constant around a line of constant X. Thus, an X-line describes the path of principal stress σ_2 and is a circular projection onto the horizontal plane of an elliptical path in 3 dimensions.

Download English Version:

https://daneshyari.com/en/article/4987160

Download Persian Version:

https://daneshyari.com/article/4987160

Daneshyari.com