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In order to find multiple stationary points of the Gibbs tangent plane distance function, often

required in the stability analysis used in phase equilibrium calculations, in this article we

apply a recently revisited version of the topographical global initialization. This initializa-

tion technique is a simple and ingenious approach based on elementary concepts of graph

theory. Here, the topographical initialization is employed to generate good starting points to

solve  a constrained global minimization problem, whose solutions are the roots of a nonlin-

ear system, which describes the first-order stationary conditions associated with the Gibbs

plane tangent criterion for phase stability analysis. To accomplish the task of local search,

in  the minimization step we use a well-established interior-point method. Our methodology

was compared against another robust method using benchmarks from the literature. Results

indicated that the present approach is a powerful strategy for finding multiple stationary

points of the Gibbs tangent plane distance function, having demonstrated high efficiency

and robustness.
© 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

The phase stability analysis is a fundamental step in the multiphase

equilibrium calculation of multicomponent mixtures. This thermody-

namic analysis has been widely used to simulate chemical engineering

and petroleum industry methods, where the prediction of number of

phases and composition calculations take place, such as distillation

and extraction processes, and enhanced oil recovery techniques, which

are commonly used to increase the amount of oil and gas recovered

from hydrocarbon reservoirs, as carbon dioxide injections, for example.

After the seminal article by Michelsen (1982a), the phase stabil-

ity analysis has been implemented in the light of the so-called Gibbs

plane tangent criterion. This criterion is a global thermodynamic sta-

bility condition (at specified temperature and pressure) that has been

investigated by Gibbs in the past (Gibbs, 1928), but whose formal

demonstration is part of a modern work due to Baker et al. (1982).

In this context, the stability test is performed using a key func-

tion called Gibbs tangent plane distance function. Geometrically, this

function describes the distance from the tangent plane to the Gibbs
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energy, at a given feed composition, to the surface itself at composi-

tion of a trial phase. Thus, a multicomponent mixture is stable if and

only if the tangent plane (at given feed composition) lies always below

the Gibbs energy surface, i.e., if and only if the Gibbs tangent plane

distance function never takes a negative value (Baker et al., 1982).

The most commonly used approach to determining if this dis-

tance function is never negative is to minimize it on its feasible set

(Michelsen, 1982a).

Another approach is to solve a set of nonlinear equations, which

describes the first-order stationary conditions associated with such

minimization problem. In this case, the signs of the Gibbs tangent plane

distance function on all its stationary points (all solutions of this set

of nonlinear equations) determine the outcome of the phase stability

analysis.

Often this second approach is preferred in practice applications.

In fact, to provide good composition estimates for subsequent multi-

phase calculations, it is necessary to find not just the global minimizer,

but all the stationary points of the Gibbs tangent plane distance

function (Lucia et al., 2005). Furthermore, the existence of multiple
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Nomenclature

Symbols
B(x, �) Positive definite matrix
d(x) Gibbs tangent plane distance function
d˛ Descent direction
dˇ Deflection vector
f(x) Objective function
F(x) Nonlinear mapping
g(x) Vector of constraints
gi (x) i-th inequality constraint
G(x) Diagonal matrix Gii (x) = gi (x)
Gij Binary interaction parameter for NRTL and UNI-

QUAC models
H(x, �) Hessian matrix of the Lagrangian function
I Identity matrix
k TGO method parameter
Kij Binary interaction parameter for state equa-

tions
k-t-matrix Submatrix of the t-matrix
k+ -topograph Graph associated with the k-t-matrix
m Number of constraints
n Problem dimension
N Number of sampling points
P Pressure
Pi i-th point of the Sobol sequence
Pri Reduced pressure of component i
qi Pure component parameter
ri Pure component parameter
S Domain of d(x)
t-matrix Topography matrix
T Temperature
Tri Reduced temperature of component i
X Vector of compositions of a trial phase
x* Stationary point of the distance function
Z Vector of compositions of a phase under con-

sideration
Z Compressibility factor

Greek symbols
�i Activity coefficient
�i Weighted average of qi
� Vector of Lagrange multipliers
� Diagonal matrix �ii = �i
�i Chemical potential of component i
� Positive scalar
�ij Binary interaction parameter for NRTL and UNI-

QUAC models
�i Weighted averages of ri

ϕi Fugacity coefficient of component i
ωi Acentric factor of component i

 ̋ Feasible set
∇f Gradient vector of f(x)
∇g Jacobian matrix of g(x)
∇2f (x) Hessian matrix of f(x)
∇2gi (x) Hessian matrix of gi (x)

stationary points indicates the tendency of the multicomponent mix-

ture to exhibiting different types of phase equilibria – “vapor–liquid”,

“liquid–liquid”, “vapor–liquid–liquid” (Stateva and Tsvetkov, 1994).

However, the calculation of all stationary points of this distance

function is a challenging problem. Depending on the thermodynamic

model used, such function can display distinct difficulties of numer-

ical and/or geometric nature that usually represent barriers to many

classical methods. By referring to the difficulty of finding all the station-

ary points of this function, Lucia et al. (2005) expressed the following:

“Unfortunately, finding all stationary points of the tangent distance

function is often easier said, than done!”

Considering only solutions of nonlinear systems, we can find in the

literature a significant number of different approaches for locating all

the stationary points of the tangent plane distance function, which

have been performed from distinct numerical methods of solving non-

linear equations. In fact, Sun and Seider (1995), Bausa and Marquardt

(2000), Kangas et al. (2011), and Malinen et al. (2012) used homotopy

based methods. Wasylkiewicz et al. (1996) developed a self-starting

algorithm, which uses ideas from differential geometry and ordinary

differential equations. Hua et al. (1996, 1998a, 1998b) employed the

interval Newton/generalized bisection method. For more applications

of this technique, see also Tessier et al. (2000), Gecegormez and Demirel

(2005), Xu et al. (2005), and Staudt et al. (2013). On the other hand, Lucia

et al. (2005) used an integral path methodology based on the terrain

methods of Lucia and Yang (2003). Corazza et al. (2007) and Nagatani

et al. (2008) applied a subdivision algorithm developed by Smiley and

Chun (2001). More recently, Ivanov et al. (2013) used a new strategy

to ensure the non-repetition of the previously determined stationary

points, and Henderson et al. (2014) employed the particle swarm opti-

mization method equipped with a polarization technique.

The topographical global initialization is a simple and ingenious

approach based on elementary concepts of graph theory, which was

proposed by Törn and Viitanen (1992) to generate good starting points

for local search methods, from points distributed uniformly in the

search space.

Originally this initialization strategy uses three steps: (i) A uniform

sampling of N points in the search space. (ii) The construction of the

topograph, which is a graph with directed arcs connecting the sam-

pled points on a k-nearest neighbors basis. In this graph the direction

of an arc is towards a point with a larger function value, and k is a pos-

itive integer less than N. (iii) The selection of the topograph minima

(points better than their neighbors, i.e., the nodes with no incoming

arcs), which will be initial guesses.

The choice of the parameter k can affect the performance of this ini-

tialization strategy. Törn and Viitanen (1992) calculated this parameter

from computational experiments.

Recently, the topographical global initialization was revisited by

Henderson et al. (2015b). As a result, now this initialization method

can be understood in the context of a more elaborate theoretical frame-

work, where their basic mathematical properties were established.

In addition, Henderson et al. (2015b) developed a formula for

estimating k, the key parameter of this method, which uses only infor-

mation regarding the possible topographs associated with the sampling

points. These authors used this new approach to solving constrained

optimization problems, where the global minimizers are the desired

solutions, illustrating the application of such methodology to the prob-

lem of calculating the global minimizer of this distance function.

In the present work, for the first time, we apply the topographical

global initialization revisited for finding multiple stationary points of

the Gibbs tangent plane distance function. This requires the use of a

suitable iterative method for local searches. To accomplish the task, we

employ a very robust and efficient interior point method (Herskovits,

1998).

The performance of the present methodology is illustrated using

test problems considered in the literature. For this, initially we

consider liquid-liquid equilibria at low pressure, where the excess

energy is described by the Non-Random Two Liquid (NRTL) or UNI-

versal QUAsi-Chemical (UNIQUAC) models (Renon and Prausnitz, 1968;

Abrams and Prausnitz, 1975; Maurer and Prausnitz, 1978).  Then, we

address vapor-liquid equilibria at high pressures modeled by the

Soave–Redlich–Kowng (SRK) or Peng–Robinson (PR) cubic equations of

state (Soave, 1972; Peng and Robinson, 1976).

The rest of the paper is organized as follows. In Section 2, we sum-

marize the formulations and the thermodynamic models used here.

The topographical global initialization revisited is presented in Sec-

tion 3. The Section 4 is devoted to the description of the interior point
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