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a b s t r a c t

In this paper, several mesh optimization schemes based on Optimal Delaunay Triangulations are devel-
oped. High-quality meshes are obtained by minimizing the interpolation error in the weighted L1 norm.
Our schemes are divided into classes of local and global schemes. For local schemes, several old and new
schemes, known as mesh smoothing, are derived from our approach. For global schemes, a graph Lapla-
cian is used in a modified Newton iteration to speed up the local approach. Our work provides a math-
ematical foundation for a number of mesh smoothing schemes often used in practice, and leads to a new
global mesh optimization scheme. Numerical experiments indicate that our methods can produce well-
shaped triangulations in a robust and efficient way.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

We shall develop fast and efficient mesh optimization schemes
based on Optimal Delaunay Triangulations (ODTs) [1–3]. Let q be a
given density function defined on a convex domain X � Rn, i.e.
q > 0;

R
X qdx <1. Let T be a simplicial triangulation of X, and

let u(x) = kxk2 and uI the piecewise linear nodal interpolation of u
based on T . We associate the following weighted L1 norm of the
interpolation error as an energy to the mesh T

EðT Þ ¼
Z

X
jðuI � uÞðxÞjqðxÞdx:

Let T N denote the set of all triangulations with at most N vertices.
Our mesh optimization schemes will be derived as iterative meth-
ods for solving the following optimization problem:

inf
T 2T N

EðT Þ: ð1:1Þ

Minimizers of (1.1) will be called Optimal Delaunay Triangulations.
Mesh optimization by minimizing some energy, also known as

the variational meshing method, has been studied by many
authors; see, e.g. [4–7] and references therein. There are many
energies proposed in the literature for this purpose, including the

widely used harmonic energy in moving mesh methods [8–10],
summation of weighted edge lengths [11,12], and the distortion
energy used in the approach of Centroid Voronoi Tessellation
(CVT) [13,14]. The advantages of our approach are:

1. Mathematical analysis is provided to show minimizers of (1.1)
will try to equidistribute the mesh size according to the density
function as well as preserve the shape regularity.

2. Optimization of the connectivity of vertices is naturally
included in our optimization problem.

3. Efficient algorithms, including local and global mesh optimiza-
tion schemes, are developed for the optimization problem (1.1).

To solve the optimization problem (1.1), we decompose it into
two sub-problems. Let us denote a triangulation T N by a pair
(p, t), where p 2XN represents the set of N vertices and t represents
the connectivity of vertices, i.e. how vertices are connected to form
simplexes, and rewrite the energy as E(p, t). We solve the following
two sub-problems iteratively:

1. Fix the location of vertices and solve mintE(p, t);
2. Fix the connectivity of vertices and solve minpE(p, t).

We stress from the outset that both problems mintE(p, t) and
minpE(p, t) do not need to be solved exactly. We are not interested
in the optimal mesh but rather meshes with good geometric quality
(including the density of vertices and shape regularity of simpli-
ces). We shall show that the mesh quality will be considerably im-
proved by performing just a few steps of the iteration methods
developed in this paper.
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Let us first consider the optimization problem mintE(p, t). That
is, for a fixed vertex set p, find the optimal connectivity of the ver-
tices (in the sense of minimizing the weighted interpolation error
EðT Þ). In [2,3], we proved that when X is convex, the minimizer
is a Delaunay triangulation of the point set p. Thus, the problem
mintE(p, t) is simplified to:

Given a set of vertices p; construct a Delaunay triangulation of p:

ð1:2Þ

The problem (1.2) is well studied in the literature [15,16]. We can
classify methods proposed for (1.2) as one of

� Local method: edge or face flipping;
� Global method: lifting method (QHULL).

The focus of this paper is on the optimization problem min-
pE(p, t), namely optimizing the placement of vertices when the con-
nectivity is fixed. We shall also discuss two types of methods:

� Local mesh smoothing;
� Global mesh optimization.

Local relaxation methods are commonly used methods for mesh
improvement. For example, Gauss–Seidel-type relaxation methods
consider a local optimization problem by moving only one vertex
at a time. The vertex is moved inside the domain bounded by its
surrounding simplexes while keeping the same connectivity to im-
prove geometric mesh quality such as angles or aspect ratios. This
is known as mesh smoothing in the meshing community [1,17–
23,13]. With several formulas for the interpolation error, we shall
derive a suitable set of local mesh smoothing schemes among
which the most popular scheme, Laplacian smoothing, will be de-
rived as a special case.

Local methods, however, can only capture the high frequency in
the associated energy, and thus results in slow convergence when
the number of grid points becomes larger; see [12,24] for related
discussions and numerical examples. To overcome slow conver-
gence of local mesh smoothing schemes, some sophisticated mul-
tigrid-like methods, notably full approximation scheme (FAS), have
been recently proposed [25–29]. To use multigrid-type methods,
one has to generate and maintain a nested mesh hierarchy which
leads to complex implementations with large memory require-
ments. The interpolation of point locations from the coarse grid
to the fine grid can fold triangulations, and addressing this care-
fully leads to additional implementation complexity. See [27,25]
for related discussions.

We shall derive a global mesh optimization method by using
another technique of multilevel methods: multilevel precondition-
ers. One iteration step of our method reads as

pkþ1 ¼ pk � A�1rEðpk; tÞ; ð1:3Þ
where A is a graph Laplacian matrix with nice properties: it is sym-
metric and positive definite (SPD) and also a diagonally dominant
M-matrix. Note that if we replace A by r2E(pn) in (1.3), it becomes
Newton’s method. Our choice of A can be thought as a precondition-
er of the Hessian matrix. Comparing with Newton’s method, our
choice of A has several advantages

� A is easy to compute, while r2E is relatively complicated;
� A�1 can be computed efficiently using algebraic multigrid meth-

ods (AMG) since A is an SPD and M-matrix, while r2E may not
be;
� A is a good approximation of r2E.

We should clarify that our methods are designed for mesh opti-
mization, not mesh generation. Therefore, we only move interior

nodes and assume all boundary nodes are well placed to capture
the geometry of the domain. We note that many mesh generators
become slow when the number of vertices becomes large. There-
fore, we call mesh generators only to generate a very coarse mesh,
and then apply our mesh optimization methods to the subse-
quently refined meshes. By doing so, we can generate high-quality
meshes with large numbers of elements in an efficient way.

The concept of Optimal Delaunay Triangulation (ODT) was
introduced in [2] and some local mesh smoothing schemes were
reported in a conference paper [1] and summarized in the first
author’s Ph. D thesis [3]. Application of ODT to other problems
can be found in [30–32]. In this paper, we include some results
from [1,3] for the completeness and more importantly, present
several new improvements listed below:

� several improved smoothing schemes for non-uniform density
functions;
� a neat remedy for possible degeneration of elements near the

boundary;
� a global mesh optimization scheme;
� some 3D numerical examples.

The rest of this paper is organized as follows. In Section 2, we
review the theory on Delaunay and Optimal Delaunay Triangula-
tions. In Section 3, we go over algorithms for the construction of
Delaunay triangulation. In Section 4, we give several formulae on
the energy and its derivatives. Based on these formulae, we present
several optimization schemes including local mesh smoothing and
a global modified Newton method. In Section 5, we provide numer-
ical examples to show the efficiency of our methods. In the last sec-
tion, we conclude and discuss future work.

2. Delaunay and Optimal Delaunay Triangulations

Delaunay triangulation (DT) is the most commonly used unstruc-
tured triangulation in many applications. It is often defined as the
dual of the Voronoi diagram [33]. In this section we use an equiva-
lent definition [34,35] which involves only the triangulation itself.

Let V be a finite set of points in Rn. The convex hull of V, denoted
by CH(V), is the smallest convex set which contains these points.

Definition 2.1. A Delaunay triangulation of V is a triangulation of
CH(V) so that it satisfies empty sphere condition: there are no
points of V inside the circumsphere of any simplex in the
triangulation.

There are many characterizations of Delaunay triangulations. In
two dimensions. Sibson [36] observed that Delaunay triangulations
maximize the minimum angle of any triangle. Lambert [37] showed
that Delaunay triangulations maximize the arithmetic mean of the
radius of inscribed circles of the triangles. Rippa [38] showed that
Delaunay triangulations minimize the Dirichlet energy, i.e. the inte-
gral of the squared gradients. D’Azevedo and Simpson [39] showed
that in two dimensions, Delaunay triangulations minimizes the
maximum containing radius (the radius of the smallest sphere con-
taining the simplex). Rajan [40] generalized this characterization to
higher dimensions. Chen and Xu [2] characterize Delaunay triangu-
lations from a function approximation point of view. We shall
briefly survey the approach by Chen and Xu [2] in the following.

Definition 2.2. Let X � Rn be a bounded domain, T a triangulation
of X, and uI;T be the piecewise linear and globally continuous nodal
interpolation of a given function u 2 Cð�XÞ based on the triangula-
tion T . Let 1 6 q 61. We define an error-based mesh quality
QðT ;u; qÞ as
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