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a b s t r a c t

We develop a residual-based a posteriori error analysis for the augmented mixed methods introduced in
[13,14] for the problem of linear elasticity in the plane. We prove that the proposed a posteriori error esti-
mators are both reliable and efficient. Numerical experiments confirm these theoretical properties and
illustrate the ability of the corresponding adaptive algorithms to localize the singularities and large stress
regions of the solutions.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recently, a new stabilized mixed finite element method was
presented and analyzed in [13] for the problem of linear elasticity
in the plane assuming pure homogeneous Dirichlet boundary con-
ditions and mixed boundary conditions with non-homogeneous
Neumann data. This approach was extended to the case of pure
non-homogeneous Dirichlet boundary conditions in the subse-
quent work [14].

The augmented formulations proposed in [13,14] rely on the
mixed method of Hellinger and Reissner that provides simulta-
neous approximations of the displacement u and the stress tensor
r. The symmetry of r is imposed weakly through the use of a La-
grange multiplier, which enters the system as a new variable that
can be interpreted as the rotation c :¼ 1

2 ðru� ðruÞtÞ (see [1,19]).
When mixed boundary conditions are considered, the essential one
(Neumann) is also imposed weakly, which yields the introduction
of the trace of the displacement on the Neumann boundary as a
Lagrange multiplier (see [5]).

Although the usual dual-mixed variational formulations satisfy
the hypotheses of the Babuška–Brezzi theory, it is difficult to de-
rive explicit finite element subspaces yielding stable discrete
schemes. In particular, when mixed boundary conditions with
non-homogeneous Neumann data are imposed, the PEERS ele-
ments can be applied but they yield a non-conforming Galerkin
scheme. This was one of the main motivations to introduce the
augmented formulation from [13].

The approach there is based on the introduction of suitable
Galerkin least-squares terms that arise from the constitutive and
equilibrium equations, and from the relation defining the rotation
in terms of the displacement. In [14], besides these Galerkin least-
squares terms, a consistency term related with the non-homoge-
neous Dirichlet boundary condition is added. In the case of pure
Dirichlet boundary conditions, the bilinear form of the augmented
formulation is bounded and coercive on the whole space and hence,
the associated Galerkin scheme is well-posed for any finite element
subspace. Thus, it is possible to use as finite element subspaces some
non-feasible choices for the usual (non-augmented) dual-mixed for-
mulation. In particular, it is possible to employ Raviart–Thomas ele-
ments of lowest order to approximate the stress tensor, continuous
piecewise linear elements for the displacement, and piecewise
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constants for the rotation. In the case of mixed boundary conditions,
the trace of the displacement on the Neumann boundary can be
approximated by continuous piecewise linear elements on an inde-
pendent partition of that boundary whose mesh size needs to satisfy
a compatibility condition with the mesh size of the triangulation of
the domain.

As pointed out in [13,14], when uniform triangulations are used
the mixed finite element schemes proposed there are cheaper than
the classical PEERS and BDM elements. More precisely, in the low-
est order case the total number of unknowns (dof) for the aug-
mented scheme behaves asymptotically as 5 �m, where �m is the
number of triangles in the triangulation; for PEERS and BDM (with
a static condensation process), the total number of dof behaves
asymptotically as 7:5 �m and 9 �m, respectively (see Section 5 in [7]
for more details). On the other hand, the lowest order symmetric
mixed finite element proposed recently in [4] consists of piecewise
linear displacements and piecewise quadratic stresses augmented
with some cubic functions and involves 30 dof per triangle; the to-
tal number of unknowns in this case behaves asymptotically as
11:5 �m. More recently, a mixed finite element method with weakly
imposed symmetry has been proposed in [2]. In the lowest order
case, the stresses are approximated by the Cartesian product of
two copies of the BDM finite element space and the displacements
and rotations are approximated by piecewise constants; the total
number of dof in this case behaves asymptotically as 9 �m. A reduced
element involving asymptotically 7:5 �m dof was also presented in
[2]. We must also mention that the approach in [13,14] was re-
cently extended in [16] to the 3D linear elasticity problem with
pure Dirichlet boundary conditions. This approach seems to be
advantageous as compared with the mixed finite element method
from [3] (see [16] for more details).

Motivated by the competitive character of the augmented
scheme introduced in [13], an a posteriori error analysis of residual
type was developed in [7] in the case of pure homogeneous Dirich-
let boundary conditions. In this paper, we extend the analysis in [7]
to the augmented schemes introduced in [13] for the case of mixed
boundary conditions and in [14] for non-homogeneous Dirichlet
boundary conditions.

The rest of the paper is organized as follows: In Section 2, we
recall the continuous and discrete augmented formulations pro-
posed in [13] for problem (2.1). We develop a residual-based a pos-
teriori error analysis and show that the a posteriori error estimator
is both reliable and efficient. Then, in Section 3, we recall from [14]
the augmented variational and discrete schemes proposed in the
case of non-homogeneous Dirichlet boundary conditions, and de-
duce an a posteriori error estimator of residual type which is shown
to be both reliable and efficient. Finally, in Section 4 we provide
several numerical results that illustrate the performance of the aug-
mented Galerkin schemes and confirm the theoretical properties of
the a posteriori error estimators introduced in this paper. Moreover,
numerical experiments show that the adaptive algorithms based on
these a posteriori error estimators are able to localize the singular-
ities and large stress regions of the solutions.

Notation and preliminary results. Given any Hilbert space H,
we denote by H2 and H2 � 2, respectively, the spaces of vectors
and square tensors of order 2 with entries in H. In particular, given
s :¼ (sij) and f :¼ ðfijÞ 2 R2�2, we denote st :¼ (sji), tr(s) :¼ s11 + s22

and s : f :¼
P2

i;j¼1sijfij. In addition, given differentiable scalar, vec-
tor and tensor fields, /, v ¼ ðv iÞ 2 R2 and s :¼ ðsijÞ 2 R2�2,

curlð/Þ :¼
� @/

@x2

@/
@x1

 !
; curlðvÞ :¼ curlðv1Þt

curlðv2Þt

 !
;

curlðsÞ :¼
@s12
@x1
� @s11

@x2

@s22
@x1
� @s21

@x2

 !
:

Let X � R2 be a bounded and simply connected domain with
polygonal boundary C, and let CD and CN be two disjoint subsets
of C such that CD has positive measure and C ¼ CD [ CN . We use
the standard terminology for Sobolev spaces and norms. We de-
note H1

CD
ðXÞ :¼fv2H1ðXÞ :v¼0 onCDg;Hðdiv;XÞ :¼fs2½L2ðXÞ�2�2 :

divðsÞ2½L2ðXÞ�2g and ½L2ðXÞ�2�2
skew

:¼fg2½L2ðXÞ�2�2 :gþgt¼0g. We re-
call that [H�1/2(CN)]2 is the dual of the space
½H1=2

00 ðCNÞ�2 :¼fvjCN
:v2½H1ðXÞ�2; v¼0 onCDg and denote by h�;�iCN

the associated duality pairing with respect to the [L2(CN)]2-inner
product; cf. [18].

Let fT hgh>0 be a regular family of triangulations of X. We assume
that for all h > 0, X ¼ [fT : T 2 T hg and each point in CD \ CN is a
vertex of T h. Given a triangle T 2 T h, we denote by hT its diameter
and define the mesh size h :¼maxfhT : T 2 T hg; we denote by E(T)
the set of the edges of T, and by Eh the set of all the edges of triangles
in the triangulation T h. Then, we can write Eh =
Eh(X) [ Eh(CD) [ Eh(CN), where Eh(S) :¼ {e 2 Eh :e # S} for S � R2.
Given an edge e 2 Eh, we denote by he the length of e. In addition,
given an integer ‘P 0 and a subset S of R2, we denote by P‘ðSÞ
the space of polynomials in two variables defined in S of total de-
gree at most ‘, and for each T 2 T h, we define the local Raviart–Tho-
mas space of order zeroRT 0ðTÞ :¼ spanfe1; e2; xg# ½P1ðTÞ�2, where
{e1,e2} is the canonical basis of R2 and x is a generic vector of R2.
Finally, we use C or c, with or without subscripts, to denote generic
constants, independent of the discretization parameters, which
may take different values at different occurrences.

In order to prove the reliability of the a posteriori error estima-
tors, we will make use of the well-known Clément interpolation
operator, Ih :H1(X) ? Xh (see [12]), where Xh is the space of contin-
uous, piecewise linear functions on T h. We recall that Ih is defined
so that IhðvÞ 2 Xh \ H1

CD
ðXÞ for all v 2 H1

CD
ðXÞ. The standard local

approximation properties stated in the following lemma are
proved in [12].

Lemma 1.1. There exist positive constants c1, c2, independent of h,
such that for all u 2 H1(X) there hold

ku� IhðuÞkL2ðTÞ 6 c1hTkukH1ðDðTÞÞ; 8T 2 T h;

ku� IhðuÞkL2ðeÞ 6 c2h1=2
e kukH1ðDðeÞÞ; 8e 2 Eh;

where DðTÞ :¼ [fT 0 2 T h : T 0 \ T – ;g and DðeÞ :¼ [fT 0 2 T h :

T 0 \ e – ;g.
To prove the efficiency of the a posteriori error estimators, we

proceed as in [9,10], and use inverse inequalities and the locali-
zation technique introduced in [21], which is based on triangle-
bubble and edge-bubble functions. Given T 2 T h and e 2 E(T), we
let wT and we be the usual triangle-bubble and edge-bubble
functions (see (1.5) and (1.6) in [21], respectively). In particular,
wT 2 P3ðTÞ, supp(wT) � T, wT = 0 on @T, and 0 6 wT 6 1 in T. Sim-
ilarly, wejT 2 P2ðTÞ, suppðweÞ# xe :¼ [fT 0 2 T h : e 2 EðT 0Þg, we = 0
on @Tne, and 0 6 we 6 1 in xe. We also recall from [20] that, gi-
ven k 2 N, there exists an extension operator L :C(e) ? C(T) such
that for all p 2 PkðeÞ, LðpÞ 2 PkðTÞ and L(p)je = p. In the following
lemma we collect some additional properties of wT, we and L.

Lemma 1.2. Let k 2 N. For any triangle T, there exist positive
constants c1, c2, c3 and c4, depending only on k and the shape of T,
such that for all q 2 PkðTÞ and p 2 PkðeÞ, there hold

kwT qkL2ðTÞ 6 kqkL2ðTÞ 6 c1kw1=2
T qkL2ðTÞ; ð1:1Þ

kwepkL2ðeÞ 6 kpkL2ðeÞ 6 c2kw1=2
e pkL2ðeÞ; ð1:2Þ

c4h1=2
e kpkL2ðeÞ 6 kw

1=2
e LðpÞkL2ðTÞ 6 c3h1=2

e kpkL2ðeÞ: ð1:3Þ

Proof. See Lemma 4.1 in [20]. h
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