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a b s t r a c t

The numerical solution of fluid–structure-interaction problems poses a paradox in that most of the com-
putational resources are consumed by the subsystem of least practical interest, viz., the fluid. Goal-ori-
ented adaptive discretization methods provide a paradigm to bypass this paradox. Based on the
solution of a dual problem, the contribution of local residuals to the error in a specific goal functional
is estimated, and only the regions that yield a dominant contribution are refined. In the present work,
we address a fundamental complication in the application of goal-oriented adaptivity to fluid–struc-
ture-interaction problems, namely, that the treatment of the interface conditions has nontrivial conse-
quences for the properties of the dual problem. In the context of a linearized model problem, we
consider two equivalent discretizations differing only on the formulation of the interface coupling terms.
By means of an adjoint consistency analysis, we show that only one of these discretizations is adjoint con-
sistent. Numerical experiments convey that the two discretizations behave very differently for the dual
problem, and that the adjoint-consistent discretization yields more reliable error estimates. Based on the
adjoint-consistent discretization, we finally present some h- and hp-adaptive results, confirming that tre-
mendous savings in computational cost can be realized through the use of goal-oriented refinement
strategies. The numerical experiments illustrate that the goal-oriented approach effectively equilibrates
the error contributions of the fluid and structure subsystems, which is imperative for efficiently resolving
the coupled fluid–structure-interaction problem, and which cannot be accomplished by uniform or resid-
ual-based refinement strategies.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of fluid–structure-interaction prob-
lems generally requires vast computational resources. An interest-
ing paradox is that the computational work is dominated by the
complexity of the subsystem that is of least practical interest,
viz., the fluid. Indeed, the fluid consumes nearly all of the compu-
tational resources while quantitative concern is primarily re-
stricted to the structural response. For instance, in [11] it is
reported that for the identification of the aeroelastic mode shapes
of an F-16 aircraft more than 95% of the total simulation time is
spent inside the fluid solver and the fluid-mesh update algorithm.

Substantial savings in computational cost can be realized by
optimizing the computational effort according to the specific goals
of the simulation. We note that in many engineering applications
the aim is not to determine the solution itself, but rather to evalu-

ate specific functionals of the solution, so-called goal, target or
output functionals. Meaningful goal functionals in the context of
fluid–structure interactions include, for instance, the global forces
exerted by the fluid on the structure [37], the stresses and dis-
placements induced at specific points in the structure [46,39], or
the net energy that is transferred from the fluid to the structure
[16]. The crucial point is that in order to reliably determine one
such goal functional, it is generally not necessary to fully resolve
all the small-scale features in the fluid and structure subsystems.
Substantial savings in computational cost can thus be realized by
resolving only those features that bear a pronounced influence
on the goal quantity of interest.

In general, it may be difficult to anticipate the local levels of res-
olution needed in the fluid and structure approximation spaces to
accomplish this. Heuristic approaches, such as a priori mesh refine-
ment in the vicinity of the fluid–structure interface, are likely to
fail resulting in a costly and possibly even inaccurate approxima-
tion of the goal functional. The use of adaptive discretization
techniques, capable of providing automated control of the goal-
quantity error to within a user-defined tolerance, is therefore
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indispensible for the efficient and reliable computation of complex
fluid–structure-interaction problems.

Such adaptive discretization techniques rely on goal-oriented er-
ror estimates for the output functional of interest. The derivation of
these error estimates proceeds a posteriori by a duality argument
and requires the solution to an appropriate dual (linearized-ad-
joint) problem. Refinement indicators are obtained by identifying
element-wise contributions to the error estimate. Accordingly, a
goal-oriented adaptive refinement strategy can be devised, in which,
starting from a very coarse discretization, only those regions in the
fluid and structure mesh are refined that contribute significantly to
the error in the goal functional under consideration.

Pioneering work in the field of goal-oriented error estimation
and adaptivity has been performed by Becker and Rannacher [3]
and Prudhomme and Oden [35]; see in particular the comprehen-
sive overviews [4,15,36] and the references therein. For related
work in the context of discontinuous Galerkin methods we also re-
fer to the efforts by Houston and Süli [24,38] and Hartmann and
Houston [20,21]. As it stands, the existing framework provides a
systematic approach for deriving a posteriori error estimates in
general output functionals of interest, which applies generically
to both linear and non-linear (initial-)boundary-value problems.
Its performance has already been demonstrated for a wide variety
of applications. The extension to multiscale and multiphysics prob-
lems, however, is still in a relatively early stage; see the latest
works of Larson et al. [27–30], Estep et al. [5,9,10] and Prudhomme
and Bauman et al. [2,34]. First applications of goal-oriented adap-
tivity to fluid–structure-interaction problems are just starting to
emerge and can be found in the works of Dunne [7], Grätsch and
Bathe [17], and Van der Zee et al. [41–43]; see also [13] for related
work on norm-oriented adaptivity using explicit residual-based er-
ror estimators.

When applying the standard framework for goal-oriented error
estimation and adaptivity to fluid–structure-interaction problems,
several complications arise. First, the manner in which the free-
boundary character manifests itself in the dual problem is nontriv-
ial and gives rise to the occurrence of shape derivatives. Some
authors have therefore resorted to approaches that bypass a proper
derivation of the dual problem, either by considering a fully Eule-
rian formulation as in [7] or by using a crude finite-difference
approximation of the linearized-adjoint [17]. In contrast to this,
in the recent work of Van der Zee et al. [41,42,44,45], the lineariza-
tion of the domain-dependent non-linearity is no longer bypassed,
but rigorously pursued using ideas from shape differential calculus.

Second, the treatment of interface conditions in the primal for-
mulation of the fluid–structure-interaction problem, including the
enforcement of flow tangency conditions for the fluid subproblem
and the evaluation of load functionals for the structure subprob-
lem, generally has nontrivial consequences for the well-posedness
of the dual problem. In particular, due to the swapping of trial and
test spaces between the primal and dual problem, the role of the
coupling terms is interchanged at the fluid–structure interface.
Thereby, coupling terms that are present in the variational formu-
lation of the primal fluid subproblem reappear in the variational
formulation of the dual structure subproblem, and vice versa. This
may give rise to an adjoint-inconsistent treatment of the interface
conditions, rendering the dual variational formulation an inconsis-
tent representation of the underlying adjoint initial-boundary-
value problem. The quality of the discrete approximation of the
dual solution can be greatly affected by this, as well as the a pos-
teriori error estimates that are derived from it.

In this paper, we address the second of the aforementioned is-
sues, i.e., the treatment of interface conditions and its effect on
the dual problem. For this purpose, any issues related to the free-
boundary character of the fluid–structure interface are deliberately
bypassed by introducing a geometric linearization. By means of an

adjoint consistency analysis along the lines of [19], it is shown that
two distinct formulations that appear to be equivalent for the pri-
mal problem, can behave very differently for the dual problem. In
particular, we highlight that a straightforward and seemingly cor-
rect treatment of the interface coupling conditions in the primal
problem, may give rise to inconsistent solutions for the dual prob-
lem that exhibit irregularities at the fluid–structure interface. We
present numerical examples that demonstrate the effect of this
on the accuracy of the computed goal functionals and the sharp-
ness of the goal-oriented error estimates and bounds. It is con-
cluded that the adjoint-consistent treatment of interface
conditions is crucial for the accurate and reliable a posteriori esti-
mation of errors in output quantities of interest; cf. [18].

The remainder of this paper is organized as follows. We start in
Section 2 by introducing a geometrically linearized model problem
and stating some relevant goal functionals. Next, in Section 3 we
discretize the model problem using a space–time finite element
method for both the fluid and structure. Two discretizations will
be presented arising from different formulations of the interface
coupling terms. Subsequently, in Section 4 we derive dual-
weighted a posteriori error estimates for generic (non-)linear out-
put functionals of interest. Adjoint consistency of the discretization
is discussed and analyzed in Section 5. Then, in Section 6 we pres-
ent some numerical examples, highlighting the importance of ad-
joint consistency and demonstrating the use of goal-oriented
error estimates to guide an hp-adaptive mesh refinement strategy.
Finally, we end in Section 7 with some concluding remarks.

2. Problem statement

As a model problem, we consider a geometrically linearized ver-
sion of the two-dimensional panel problem from Piperno and Far-
hat [33], pertaining to the aeroelastic response of a flexible beam
immersed in an inviscid compressible fluid flow; see Fig. 1. Below,
we briefly introduce the governing initial-boundary-value prob-
lems for the fluid and the structure, as well as the interface condi-
tions interconnecting the two. In addition, we present several
relevant goal functionals.

2.1. Fluid subproblem

For the formulation of the fluid subproblem, we consider the
space–time domain Qf :¼X � I, consisting of the open bounded do-
main X � R2 extruded in time over the interval I = (0,T). The
boundary of Qf is denoted by oQf and consists of the lower time
boundary X � {0}, the upper time boundary X � {T} and the lateral

Fig. 1. Illustration of the model problem with an expanded view of the interface
region.
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