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One of the most widely used techniques for the simulation of non-homogeneous random fields is the
spectral representation method. Its key quantity is the power spectrum, which characterizes the random
field in terms of frequency content and spatial evolution in a mean square sense. The paper at hand pro-
poses a method for the estimation of separable power spectra from a series of samples, which combines
accurate spectrum resolution in space with an optimum localization in frequency. For non-separable
power spectra, it can be complemented by a joint strategy, which is based on the partitioning of the
space-frequency domain into several sub-spectra that have to be separable only within themselves. Char-
acteristics and accuracy of the proposed method are demonstrated for analytical benchmark spectra,
whose estimates are compared to corresponding results of established techniques based on the short-
time Fourier, the harmonic wavelet and the Wigner-Ville transforms. It is then shown by a practical
example from stochastic imperfection modeling in structures that in the presence of strong narrow-
bandedness in frequency, the proposed method for separable random fields leads to a considerable

improvement of estimation results in comparison to the established techniques.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Within the last three decades, computational stochastic
mechanics has evolved into a self-contained and prolific field of re-
search, which has brought forth a wide range of sophisticated and
well-established methodologies for the stochastic simulation of
uncertain engineering systems [6,8,33,40,42]. Due to the rapidly
growing availability of large-scale and cheap computer power,
the intensive computational demands of these techniques become
more and more manageable today, which makes stochastic simula-
tion increasingly interesting for actual use in engineering practice.
One emerging field of application is the stability analysis of thin-
walled structures [7,40], where the random variability of geomet-
ric and material imperfections leads to considerable uncertainty in
corresponding buckling loads. As a starting point, a series of com-
putational studies has recently shown that the influence of random
imperfections on the size and variability of the ultimate strength of
cylindrical shells can be reproduced with respect to corresponding
experimental tests [1,23-26,32-34,38].

Apart from algorithmic maturity, the quality of stochastic
simulation methods predominantly depends on the accurate
reproduction of the random physical key phenomena by corre-
sponding random field models. In the case of imperfection trig-
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gered buckling, a small misrepresentation of the physical
imperfection wave length in the imperfection model can lead to
a large discrepancy between real and simulated system response,
because the dominant buckling mode might shift to a higher Eigen-
form, leading to an unphysical increase in ultimate strength. One of
the most widely used techniques for the simulation of imperfec-
tions as random fields is the spectral representation method
[9,35,36,39]. The key quantity of spectral representation is the
power spectrum [18,27,28,30,31,44], which is related to the aver-
age energy of the random field and is obtained for example in
earthquake applications by estimation from measured ground mo-
tion accelerations [4,12,37]. Despite its decisive importance for
realistic stochastic buckling simulations, only little experience ex-
ists so far in transferring experimental imperfection measure-
ments, which typically are strongly narrow-band functions at
very low frequencies, into accurate evolutionary power spectra.
Up to now, measurement based evolutionary imperfection model-
ing relies on the adoption of established time-frequency analysis
techniques from digital time signal processing [24,25].

Against this background, the present paper intends to shed
some light on key issues related to the evolutionary power spec-
trum estimation of strongly narrow-band random fields, with spe-
cial emphasis on their application to imperfection modeling in
structures. First, a concise review of existing methods for the esti-
mation of evolutionary power spectra [2,3,27] is presented.
Second, a simple yet effective method for evolutionary spectrum
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estimation of separable random fields is introduced, referred to as
method of separation in the following, which provides accurate
spectrum resolution in space at an optimum localization in fre-
quency. Third, a joint strategy for non-separable fields is proposed,
which is based on partitioning the space-frequency domain into
several sub-spectra that have to be separable only within them-
selves and can thus be treated consecutively by the method of sep-
aration. Fourth, the presented methods are applied for the
estimation of benchmark spectra with different bandwidths and
frequency content, comprising a modulated Kanai-Tajimi spec-
trum [13,37] and a practical example of geometric imperfections
in an I-section flange [11]. The results demonstrate weaknesses
of the established techniques, i.e. the limitation of simultaneous
space-frequency localization or the appearance of negative spectral
density, and the advantages of the proposed method in terms of
accurate space-frequency localization of its spectrum estimates,
which is of particular importance in the presence of strong nar-
row-bandedness in frequency.

The present paper is organized as follows: Section 2 briefly
summarizes relevant elements of stochastic process theory. Sec-
tions 3 and 4 contain a short overview of established space-fre-
quency analysis techniques and an in-depth derivation of the
method of separation, respectively. Section 5 illustrates difficulties
of evolutionary spectrum estimation in the presence of strong nar-
row-bandedness and shows the results of each method for the
imperfection example.

2. Some elements of stochastic process theory

A random field h(x), equivalently known as a stochastic process
in a time-frequency context, represents an ensemble of spatial
functions, whose exact values are a priori indeterminate, but fol-
low a predefined probability distribution [18,27,44]. It can be split
into a deterministic mean pu(x) = E[h(x)] and a zero-mean random
field flx) = h(x) — u(x). The stochastic structure of f(x) is character-
ized by a number of higher moments, starting with the variance or
mean square E[|f{x)]?], and an autocorrelation function R(x,7),
which determines for any f(x) the dependence of neighbouring val-
ues as a function of their spatial distance 7 [18,27,44]. The operator
E[] denotes mathematical expectation, which can be evaluated by
simple ensemble averaging [18].

The Fourier transform F(w), which decomposes a zero-mean
random field f{x) of length L by projecting it onto the basis of sines
and cosines as a function of frequency w [14,18,22], reads

L
F(w) = 2]? . /0 Fx) - e dx, 2.1)

where [ denotes the imaginary unit. The transformation of Eq. (2.1)
can be evaluated in discrete form by the computationally efficient
Fast Fourier Transform (FFT) [14,18]. In view of its trigonometric
decomposition, f{x) can be completely characterized by a two-sided
power spectrum S [18,27,28,30,31,44], which is called homoge-
neous, if S(w) depends only on frequency w, and evolutionary, if
S(w,x) depends on both frequency w and space x. Mathematically,
the power spectrum is defined as the Fourier transform of the auto-
correlation function R(x,t) (Wiener-Khintchine theorem) [30,31].
An intuitive approach to the power spectrum is provided by its
interpretation as the distribution of the mean square of the random
field fix) over the space-frequency domain, so that it holds
E[{f(x)ﬁ = 2/ S(w,x)dw. (2.2)
0

In this context, Eq. (2.2) is also denoted as the incremental en-
ergy or instantaneous power in space. Analogous to Eq. (2.2), the
incremental energy in frequency is defined as

L
E[|F()[*] = / S(o,x) dx. (23)
0

Egs. (2.2) and (2.3) are also known as the marginal spectral den-
sities of a random field [3]. The power spectrum is called narrow-
band, if the bulk of its energy is located only within a very small
frequency band [18]. Additionally, the power spectrum satisfies
spectral separability, if it can be multiplicatively decomposed into
a homogeneous spectrum part S(w) and a modulating spatial enve-
lope g(x) as

S(,%) = S(w) - g(x). (24)

The corresponding random field is then called separable.

If the power spectrum S(w,x) of a random field is known, an
arbitrary number m of corresponding Gaussian random samples
can be generated by the spectral representation method
[9,35,36,39], which reads for a one-dimensional univariate zero-
mean Gaussian random field

N-1
fOx) = V2 Ay cos (ox+9f)), (2.5)
n=0
with
An=+/2-S(0n,x) - Ao, (2.6a)
Wy =n- Ao, (2.6b)
Aw = @y /N, (2.6¢)
Ao =0 or S(wy=0,x) =0, (2.6d)

wherei=1,2,...,mandn=0,1,2,..., (N — 1). The parameter w, is
the cut-off frequency, beyond which the power spectrum is as-
sumed to be zero, the integer N determines the discretization of
the active frequency range, and ¢\ denotes the (i) realization of
N independent phase angles uniformly distributed in the range
[0, 27]. For non-Gaussian random fields, the translation field theory
can be used to generate random samples from a simple transforma-
tion of an underlying Gaussian field [10,40].

The performance of the evolutionary spectrum estimation
methods to be presented in the following is tested by a uniformly
modulated Kanai-Tajimi spectrum, which is defined according to
Eq. (2.4) by its separable components

) = e (“’_>2 : (2.7)

(- ey o]

e—O.ZSx _ e—O.Sx

(2.8)

Parameters o= 10rad/mm and ¢ = 0.24 represent the natural
frequency and the damping ratio, respectively. The Kanai-Tajimi
spectrum of Eq. (2.7) has been widely applied in a time-frequency
context for the stochastic simulation of seismic ground accelera-
tion, and various modulating terms leading to both separable and
non-separable spectra can be found in the literature [13,16]. The
specific values for wg and ¢ in conjunction with the exponential
modulating function of Eq. (2.8) are adopted from [37] and yield
a power spectrum with equally pronounced evolution in space
and frequency directions, therefore representing a suitable bench-
mark for evolutionary estimation techniques (see Figs. 1 and 2). In
view of the energy interpretation of the spectrum, Eq. (2.7) can be
conceived of as the incremental energy distribution in frequency
direction, which does not change its shape, but is merely modu-
lated in amplitude along the spatial axis by Eq. (2.8).

For a performance test in the non-separable case, a composed
benchmark spectrum is defined as
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