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a b s t r a c t

This study develops a novel hybrid method that combines the finite element method (FEM) and the
scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-
brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is
used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This
enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement
or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The
fracture process zones are modelled using nonlinear cohesive interface elements that are automatically
inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks
and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in
calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack
propagation in three notched concrete beams is then modelled. The results compare well with experi-
mental and numerical results available in the literature.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since the smeared [1] and discrete [2] crack models were
introduced in the late 1960s, they have been extensively used to
model crack propagation in brittle and quasi-brittle materials. In
smeared crack models the cracks which are ‘‘smeared” out over
the domain are represented by softening stress–strain relation-
ships in the normal and tangential directions of the crack surfaces.
Discrete crack models, on the other hand, represent cracks by
separating the nodes along the crack path and usually needs reme-
shing. Although the smeared crack models have been more popular
due to their ease in implementation, they suffer from spurious
stresses due to the kinematic incompatibility between elements
and have to be remedied by introducing a shear retention factor
[3] or by rotating the cracks so that they are aligned with the prin-
cipal stress and strain directions [4]. Recent approaches to model
discontinuities caused by cracks enrich either the elements cut
by the crack (embedded crack models e.g., [5–7]) or the nodes
along the crack path (extended finite element method (XFEM)
e.g., [8–10]) using discontinuous functions. These approaches do
not need remeshing and have shown tremendous potential in
modelling crack propagation.

Discrete crack models use remeshing algorithms to update
mesh topology as cracks propagate. They require more implemen-

tation effort. However, they are capable of accurately representing
the discontinuities between the crack surfaces, and are useful to
study the local behaviour in the vicinity of cracks. Most of the dis-
crete crack models are based on the finite element method (FEM).
As stress singularities at crack tips are not accounted for by con-
ventional FEM formulations, very fine crack tip meshes are often
needed to accurately calculate fracture parameters such as the
stress intensity factors (SIFs), energy release rates and crack-tip
stresses, which are used in crack propagation criteria. Various rem-
edies have been proposed, such as the quarter-point elements [11],
hybrid Trefftz elements [12], elements having shape functions with
crack tip asymptotic expansions [13], enriched elements [14] and
hybrid crack elements (HCE) [15–18]. In general, however, these
remedial methods still need fine crack-tip meshes or impose spe-
cial requirements on the shape and element types of crack-tip
meshes. As a result, the remeshing algorithms used in FEM to
accommodate crack propagation are usually very complicated.

Recently, Yang et al. [19–21] successfully applied the scaled
boundary finite element method (SBFEM) to model discrete crack
propagation in concrete structures. The SBFEM is a semi-analytical
method developed by Wolf and Song [22] and is very efficient in
solving problems with unbounded media, discontinuities and
singularities. In modelling crack propagation problems, the SBFEM
can extract accurate SIFs from semi-analytical solutions of
displacements or stresses using substantially fewer degrees-
of-freedom (DOF) than the FEM. Moreover, the remeshing and
mesh mapping procedures in the SBFEM are much simpler yet
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more accurate. The SBFEM-based methods developed in [19–21]
are particularly suitable for problems with single crack or a few
cracks. For problems with many cracks that become too close dur-
ing propagation, the remeshing operation is cumbersome because
the subdomains may become so distorted that not all the nodes are
visible from their scaling centres.

To tackle this problem, this study further develops a hybrid
method that combines the FEM and the SBFEM. It can model crack
propagation in both linear elastic- and nonlinear-fracture mechan-
ics problems. In the latter, cohesive interface elements (CIEs) are
automatically inserted into the FE mesh as the cracks propagate.
A very simple yet flexible local remeshing procedure, based on
the FE mesh only, is used to accommodate crack propagation.
The crack-tip FE mesh is then replaced by a SBFEM rosette to ex-
tract accurate SIFs, which are subsequently used to evaluate the
crack propagation criterion. Both the FEM’s flexibility in remeshing
for multiple crack problems and the SBFEM’s high accuracy in cal-
culating SIFs are thus exploited.

2. The hybrid finite element-scaled boundary finite element
method

The basic idea of this method is to carry out remeshing solely
based on the FE mesh, and to calculate the SIFs from the SBFEM ro-
sette which replaces the crack-tip FE mesh. The key elements of the
method are described below.

2.1. The scaled boundary finite element method

In the SBFEM, a domain is partitioned into a number of subdo-
mains. Fig. 1a shows a typical two-dimensional SBFEM mesh with
three subdomains, in which subdomain 1 contains a crack (cracked
subdomain). Only the boundaries of subdomains are discretized
using one-dimensional finite elements. The crack surfaces are not
discretized. Each subdomain has a scaling centre ðx0; y0Þ from
which all the nodes on the boundary of the subdomain are visible.
In the cracked subdomain, the scaling centre is positioned at the
crack tip. The coordinates of any point in a subdomain are uniquely
defined by a local coordinate system ðn; sÞ. n is the radial coordinate
which varies from zero at the scaling centre to one on the subdo-
main boundary. s is the circumferential coordinate (see Fig. 1b).
The local coordinates ðn; sÞ are related to the Cartesian coordinates
ðx; yÞ by the scaling equations [23]

x ¼ x0 þ n
x1 þ x2 � 2x0

2
þ ðx2 � x1Þs

2

� �
¼ x0 þ nxsðsÞ; ð1Þ

y ¼ y0 þ n
y1 þ y2 � 2y0

2
þ ðy2 � y1Þs

2

� �
¼ y0 þ nysðsÞ; ð2Þ

ðx1; y1Þ and ðx2; y2Þ are the nodal coordinates of an element on the
boundary.

In each subdomain, an approximate solution is sought in the
form

uðn; sÞ ¼ NðsÞuðnÞ; ð3Þ

where uðnÞ is the displacement function in the radial direction and
N(s) is the shape function matrix. For a two-noded element on the
subdomain boundary

NðsÞ ¼
N1 0 N2 0
0 N1 0 N2

� �
ð4Þ

with

N1 ¼
1
2
ð1� sÞ; N2 ¼

1
2
ð1þ sÞ: ð5Þ

Substituting Eq. (3) into the principle of virtual work, the governing
equations of SBFEM for a subdomain can be obtained as [23]

p ¼ E0uðnÞ;n þ E1T
uðnÞ

���
n¼1

ð6Þ

E0n2uðnÞ;nn þ ðE
0 þ E1T � E1ÞnuðnÞ;n � E2uðnÞ ¼ 0; ð7Þ

where

p ¼
Z

s
NðsÞT t ds; ð8Þ

E0 ¼
Z

s
B1ðsÞT DB1ðsÞjJjds; ð9Þ

E1 ¼
Z

s
B2ðsÞT DB1ðsÞjJjds; ð10Þ

E2 ¼
Z

s
B2ðsÞT DB2ðsÞjJjds: ð11Þ

Eqs. (6) and (7) ensure equilibrium is satisfied analytically in the
radial direction and in the finite element sense in the circumferen-
tial direction. In Eqs. (8)–(11), p is the nodal load vector due to
boundary tractions, E0;E1 and E2 are coefficient matrices that de-
pend on the geometry and material properties of the subdomain,
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Fig. 1. (a) A typical SBFEM mesh and (b) a two-noded line element on subdomain boundary.
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