Author's Accepted Manuscript

Polyelectrolyte complexes/silica hybrid hollow fiber membrane for fusel oils pervaporation dehydration processes

Kai-Fan Chen, Pei-Yao Zheng, Jia-Kai Wu, Nai-Xin Wang, Quan-Fu An, Kueir-Rarn Lee

www.elsevier.com/locate/memsci

PII: S0376-7388(17)31420-5

DOI: https://doi.org/10.1016/j.memsci.2017.10.002

Reference: MEMSCI15628

To appear in: Journal of Membrane Science

Received date: 19 May 2017

Revised date: 22 September 2017 Accepted date: 1 October 2017

Cite this article as: Kai-Fan Chen, Pei-Yao Zheng, Jia-Kai Wu, Nai-Xin Wang, Quan-Fu An and Kueir-Rarn Lee, Polyelectrolyte complexes/silica hybrid hollow fiber membrane for fusel oils pervaporation dehydration processes, *Journal of Membrane Science*, https://doi.org/10.1016/j.memsci.2017.10.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Polyelectrolyte complexes/silica hybrid hollow fiber membrane for fusel oils pervaporation dehydration processes

Kai-Fan Chen ^a, Pei-Yao Zheng ^a, Jia-Kai Wu ^a, Nai-Xin Wang ^b, Quan-Fu An ^{* a, b}, Kueir-Rarn Lee ^c

E-mail addresses: anqf@zju.edu.cn (Q. F. An)

ABSTRACT:

Pervaporation as a tool to remove the residual water in biological resources, such as fusel oils (by-product of alcohol fermentation), is gaining increasing importance and consist with sustainable development well. In this study, polyelectrolyte complexes/silica (PEC/SiO₂) hybrid hollow fiber membranes were prepared in situ via polysulfone ultrafiltration support glycidyloxypropyltrimethoxysilane (GPTMS) was introduced as precursor and crosslinker into poly (diallyldimethylammonium chloride)-sodium carboxymethyl cellulose complexes to form SiO₂ particles in situ and enhance the interaction between inorganic and organic components. The physicochemical properties and morphology of the membranes were characterized by FT-IR, FESEM, EDS, etc. PEC/SiO₂ membrane (PECM/SiO₂) achieved an enhanced flux compared with the PEC pristine membrane without GPTMS. The membranes possessed a flux of 1332 g/m²h and water content in permeate of 99.0 wt% for the dehydration of fusel oils at 60 °C. The effects of feed temperature and water content in feed on pervaporation performance were also investigated. Furthermore, the performance of PECM/SiO₂ for the batch continuous dehydration application of fusel oils was more efficient than PERVAP-1001 commercial membranes. This approach provided a convenient way to prepare PEC/SiO₂ hybrid hollow fiber membranes, which were potentially applied in fusel oils pervaporation dehydration processes.

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China

^b Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China

^c R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chung-Li 32023, Taiwan

^{*}Corresponding Author.

^{*} To whom correspondence should be addressed. Phone: (+86)-571-87953780. E-mail: anqf@zju.edu.cn.

Download English Version:

https://daneshyari.com/en/article/4988597

Download Persian Version:

https://daneshyari.com/article/4988597

<u>Daneshyari.com</u>