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The paper presents an approach to nonlinear buckling fiber angle optimization of laminated composite shell
structures. The approach accounts for the geometrically nonlinear behaviour of the structure by utilizing
response analysis up until the critical point. Sensitivity information is obtained efficiently by an estimated
critical load factor at a precritical state. In the optimization formulation, which is formulated as a
mathematical programming problem and solved using gradient-based techniques, a number of the lowest
buckling factors are included such that the risk of “mode switching” during optimization is avoided. The
presented optimization formulation is compared to the traditional linear buckling formulation and two
numerical examples, including a large laminated composite wind turbine main spar, to clearly illustrate the
pitfalls of the traditional formulation and the advantage and potential of the presented approach.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The use of fiber-reinforced polymers has gained an ever-increasing
popularity due to their superior mechanical properties. Designing
structures made out of composite material represents a challenging
task, since both thicknesses, number of plies in the laminate and their
relative orientationmust be selected. The best use of the capabilities of
thematerial can only be gained through a careful selectionof the layup.
This work focuses on optimal design of laminated composite shell
structures i.e. the optimal fiber orientationswithin the laminatewhich
is a complicated problem. One of the most significant advances of
optimal design of laminate composites is the ability of tailoring the
material tomeet particular structural requirementswith littlewaste of
material capability. Perfect tailoring of a composite material yields
only the stiffness and strength required in each direction. A survey of
optimal design of laminated plates and shells can be found in [1].

Stability is one of the most important objectives/constraints in
structural optimization and this also holds for many laminated
composite structures, e.g. a wind turbine blade. Traditionally in
optimization, stability is regarded as the linear buckling load, but for
structures exhibiting a nonlinear responsewhen loaded the traditional
approach can lead to unreliable design results, see e.g. [2]. In stability
analysis the buckling load is often approximated by linearized
eigenvalue analysis at an initial prebuckling point (linear buckling
analysis) and the buckling load is generally overestimated. In the case
where nonlinear effects cannot be ignored nonlinear path tracing
analysis is necessary. For limit point instability, several standard finite
element procedures allow the nonlinear equilibrium path to be traced

until a point just before the limit point. The traditional Newton like
methods will probably fail in the vicinity of the limit point and the
post-critical path cannot be traced. More sophisticated techniques, as
the arc-length methods suggested by [3] and subsequently modified
by [4] and [5]are among some of the techniques available today for
path tracing analysis in the post-buckling regime.

Amore accurate estimate of the buckling load, than that obtainable
with linear buckling, can be obtained by performing a geometrically
nonlinear response analysis and approximate the buckling load by an
eigenvalue analysis on the deformed configuration. Various eigenval-
ue problems have been suggested for the stability analysis of nonlinear
structures. [6] and [7] formulated linear eigenvalue problems with
information at one load step on the nonlinear prebuckling path. This
formulation is referred as the “one-point” approach, where stiffness
information is extrapolated until a singular tangent stiffness is
obtained. [8] formulated a linear eigenvalue problem utilizing tangent
information at two successive load steps on the nonlinear prebuckling
path, and are referred as the “two-point” approach.

Optimization with stability constraints has been studied exten-
sively in the past. [9] and [10] described an optimality criterion
method for determining the minimum weight design of linear space
truss structures subjected to stability constraints. They solved linear
stability analysis problems to obtain the critical load and obtained
sensitivities by differentiating the discretized matrix eigenvalue
problemwith respect to design variables. Later methods for obtaining
optimum designs of truss structures with stability constraints while
considering geometric nonlinearities were presented by [11] by using
a relation based on equal strain energy density in all members.

[12] presented design sensitivities of the buckling load for nonlinear
structures by taking derivatives of discretized matrix equations with
respect to design variables. The method only works for limit points and
the critical point needs to be precisely determined for evaluation of
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sensitivities. [13] presented a variation of the formula that would not
only work for limit points but also for bifurcation points.

[14] presented a formulation of continuum design sensitivity
analysis of the critical load based on the “one-point” and “two-point”
linearized eigenvalue problem. Their expressions would work at any
prebuckling point on the nonlinear equilibrium path. They noted that
the design sensitivities did not converge to those of the exact critical
load when approximated in the near vicinity of the critical point due
to divergence in the derivatives of the displacements.

[15] approximated the exact design sensitivities derived by [12] by
applying the concept from nonlinear stability analysis, either by “one-
point” or “two-point” approach. It was noted that the approximated
design sensitivities converged to those by [12] when the approxima-
tion point approaches the exact critical point. [16] adopted themethod
by [15] and included imperfections for avoidance of bifurcation points.

Research on the subject of structural optimization of composite
structures considering stability has been reported by many investi-
gators. The first work to appear concerned simple composite
laminated plates and circular cylindrical shells where stability was
determined by solution of buckling differential equations, see [17–26].
Later, buckling optimization of composite structures was considered
in a finite element framework where the buckling load was
determined by the solution to the linearized discretized matrix
eigenvalue problem at an initial prebuckling point. Optimization of
laminated composite plates has been studied by [27–32], while others
consideredmore complex composite structures as curved shell panels
and circular cylindrical shells, see [33–40]. However, applications of
optimizationmethods to stability analysis and design of a general type
of complex laminated composite shell structures have been very
limited. To the best knowledge of the authors only one paper reports
on nonlinear gradient-based buckling optimization of composite
laminated plates and shells, namely the paper by [41], where limit
load optimization is considered.

Another important topic in structural stability is the study of the
influence of initial imperfections. Imperfections are deviations from
the perfect structure, i.e. the analysis model, and can in general be
geometrical, structural, material or load related. Despite that initial
imperfections may be important in terms of the stability load of a
structure it is not considered in the present paper.

This paper presents an integrated and reliable method for doing
optimization of composite structures w.r.t. stability by including the
nonlinear response by a path tracing analysis, here by the arc-length
method, in the optimization formulation using the Total Lagrangian
formulation. The nonlinear path tracing analysis is stopped when a
limit point is encountered and the critical load is approximated at a
precritical load step according to the “one-point” approach. Design
sensitivities of the critical load factor are obtained semi-analytically
by the direct differentiation approach on the approximate eigenvalue
problem described by discretized finite element matrix equations. A
number of the lowest buckling load factors are considered in the
optimization formulation in order to avoid problems related to “mode
switching” well-knowing that issues may be encountered due to
divergence of the displacement sensitivities. The proposed method is
benchmarked against a formulation based on linear buckling analysis
on two engineering examples of laminated composite structures. This
will help clarify the importance of the nonlinearity in structural
design optimization w.r.t. stability.

In this work only Continuous Fiber Angle Optimization (CFAO) is
considered thus fiber orientations in laminate layers with preselected
thickness and material are chosen as design variables in the laminate
optimization.

The “traditional” linear formulation for buckling analysis, sensi-
tivity analysis and optimization formulation is outlined in Sections 2
and 3. In Section 4 the proposed procedure regarding nonlinear
buckling analysis is stated. Derivations of design sensitivities, using
the direct differentiation approach, of the nonlinear buckling load are

presented along with the nonlinear buckling optimization formula-
tion in Section 5. Both methods are benchmarked upon engineering
examples of laminated composite structures. In Section 6 a laminated
composite U-profile is studied while a much more complicated
structure of a generic main spar of a wind turbine blade is studied in
Section 7. Conclusions are outlined in Section 8.

2. Linear buckling analysis of laminated composite shell structures

The finite element method is used for determining the linear
buckling load factor of the laminated composite structure, thus the
derivations are given in a finite element context.

A laminated composite is typically composed of multiple materials
andmultiple layers, and the shell structures can in general be curvedor
doubly-curved. The materials used in this work are fiber-reinforced
polymers, e.g. Glass or Carbon Fiber-Reinforced Polymers (GFRP/
CFRP), oriented at a given angle θk for the kth layer or softer isotropic
core material. All materials are assumed to behave linearly elastic and
the structural behaviour of the laminate is described using an
equivalent single layer theory where the layers are assumed to be
perfectly bonded together such that displacements and strains will be
continuous across the thickness.

The solid shell elements used for all the examples in this paper are
derived using a continuum mechanics approach so the laminate is
modelledwith a geometric thickness in three dimensions, see [42]. The
element used is an eight node isoparametric element where shear
locking and trapezoidal locking are avoided by using the concepts of
assumed natural strains (ANS) for, respectively, out-of-plane shear
interpolation, see [43], and through-the-thickness interpolation, see
[44].Membrane and thickness locking is avoided by using the concepts
of enhanced assumed strains (EAS) for the interpolation of the
membrane and thickness strains, respectively, see [44] and [45]. The
EAS interpolation is used to enhance the compatible strain tensor with
an independent incompatible strain tensor, and the solid shell element
used has seven internal degrees of freedom for the representation of
the enhanced strains. This is the lowest number of internal degrees of
freedom to introduce for the enhanced strains if the element should
pass the in-planemembrane and out-of-plane bending patch tests, see
[46] for details.

The static equilibrium equation for the structure may be written as

K0D = R ð1Þ

Here D is the global displacement vector, K0 is the global initial
stiffness matrix, and R the global load vector.

Based on the displacement field, obtained by the solution to
Eq. (1), the element layer stresses can be computed, whereby the
stress stiffening effects due to mechanical loading can be evaluated by
computing the initial stress stiffness matrix Kσ. By assuming the
structure to be perfect with no geometric imperfections, stresses are
proportional to the loads, i.e. stress stiffness depends linearly on the
load, displacements at the critical/buckling configuration are small,
and the load is independent of the displacements, the linear buckling
problem can be established as

K0 + λjKσ

� �
Φj = 0; j = 1;2;…; J ð2Þ

where the eigenvalues are ordered by magnitude, such that λ1 is the
lowest eigenvalue, i.e. buckling load factor, andΦ1 is the corresponding
eigenvector i.e. buckling mode. In general, for engineering shell
structures, the eigenvalue problem in Eq. (2) can be difficult to solve,
due to the size of the matrices involved and large gaps between the
distinct eigenvalues. For efficient and robust solutions, Eq. (2) is solved
by a subspacemethodwith automatic shifting strategy, Gram–Schmidt
orthogonalization, and the sub-problem is solved by the Jacobi
iterations method, see [47].
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