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In this paper a variational multiscale method based on local projection and grad–div stabilization for Large–
Eddy simulation for the incompressible Navier–Stokes problem is considered. An a priori error estimate is
given for a case with rather general nonlinear (piecewise constant) coefficients of the subgrid models for the
unresolved scales of velocity and pressure. Then the design of the subgrid scale models is specified for the
case of homogeneous isotropic turbulence and studied for the standard benchmark problem of decaying
homogeneous isotropic turbulence.
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1. Introduction

Incompressible viscous flows of a Newtonian fluid are modeled by
the Navier–Stokes equations which read: given a bounded domain
Ω⊂R3 with a piecewise smooth boundary ∂Ω, the simulation time T,
and a force field f: (0, T]×Ω→R3, find a velocity fieldu: (0, T]×Ω→R3

and a pressure field p: (0, T]×Ω→R such that

∂tu−2ν∇ · Du + u · ∇ð Þu + ∇p = f in ð0; T� × Ω;

∇ · u = 0 in 0; T½ � × Ω;

u j t=0 = u0 in Ω;

ð1Þ

where νN0 is the kinematic viscosity coefficient and Du : = 1
2 ∇u +ð

∇uð ÞT Þ denotes the velocity deformation tensor. Some boundary
conditions have to be imposed on ∂Ω to obtain a closed set of
equations. In the analysis below, we impose homogeneous Dirichlet
conditions for simplicity, but see Remark 2.1.

In many industrial applications, simulations of turbulent flows are
of major interest. Such flows are characterized by large Reynolds
numbers Re=UL/ν with given characteristic length L and velocity
scale U. For the numerical approximation, the finite element (FE)
method is one of the most popular and mathematically sound
variants. The standard Galerkinmethod aims to simulate all persistent
scales in the range of order O(diam(Ω)) down to O(Re−3/4) which is

not feasible even in next futures for the case of large Re. Residual-
based stabilization techniques, like the streamline-upwind (or SUPG)
method and/or the pressure stabilization (or PSPG) technique, add
numerical viscosity acting at all scales. For a representative overview,
we refer to Ref. [29]. The natural approach to simulate only the
behaviour of large scales accurately has been considered for a long
time in the classical Large-Eddy simulation (LES). Several drawbacks
like commutation errors and the unsolved question of appropriate
boundary conditions for the large scales have been critically discussed
in recent times. For a review, see Ref. [4].

Based on ideas in Refs. [11,12], the class of variational multiscale
(VMS) methods provides an alternative approach to the simulation of
large scales. For a first application to turbulent flow problems, we
refer to Ref. [13]. The basic idea of VMS methods is to define the large
scales by projections into appropriate function spaces. Within a three-
scale decomposition of the flow field into large, resolved small and
unresolved scales, the influence of the unresolved small scales is
described by a subgrid model acting directly only on the resolved
small scales. A series of numerical studies reports good experience
with VMS methods for standard benchmark problems. Meanwhile,
different variants of VMS methods have been considered, for a review
and comparison of different variants see Refs. [10,17].

The numerical analysis of VMS methods for turbulent flows is still
in its infancy. Let us remark that the analysis depends on the choice of
the discrete velocity–pressure approximation. For the case of equal-
order interpolation, we refer to the contributions of Codina and his co-
workers, see, e.g., Ref. [26]. The analysis may differ in certain aspects
from the equal-order case if inf–sup stable FE pairs are applied (as in
the present paper). Some progress has been made by John and co-
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workers for projection-based variants of the VMS method with inf–
sup stable FE pairs. A globally constant turbulent viscosity νT together
with an elliptic projection for the definition of the large scales had
been used in Ref. [14] and analyzed in Ref. [15]. The recent paper [16]
analyzes a Smagorinsky-type subgrid model applied together with an
L2-projection. The latter approach avoids some open problems of the
elliptic projection in Ref. [14]. For a discussion on subgrid modeling of
the unresolved pressure scales based on grad–div stabilization, we
refer to Ref. [25].

In the present paper, we consider a modified projection-based FE-
VMS method which had been presented in Refs. [14,20]. The subgrid
model for the unresolved velocity scales is based on the L2-projection
ΠH for the definition of the large scales of the velocity deformation
tensor. One difference to the approach in Ref. [16] is that the so-called
fluctuation operator I−ΠH is applied to the velocity deformation
tensor whereas the velocity deformation tensor is applied to the
fluctuation operator in Ref. [16] first. Please notice that these
operators do not commute in the general case [24]. Another difference
to Refs. [15,16] is the application of the so-called grad–div stabi-
lization as a subgrid model for the pressure. In particular, we address
implementation issues and the relation of the method to stabilization
techniques based on local projection. We derive an a priori error
estimate for the semidiscrete problem where the definition of the
subgrid models for the unresolved velocity and pressure scales
remains rather general. For the case of homogeneous isotropic
turbulence, we specify the velocity subgrid model to be of Smagor-
insky-type. In particular, Lilly's argument [13,22] is modified for this
model. The subgrid parametrization includes the dependence on the
polynomial degree of the velocity approximation. Finally, the
parametrization of the two subgrid models is checked for the case
of decaying homogeneous isotropic turbulence.

The paper is organized as follows: in Section 2, we introduce the
projection-based VMSmethod under consideration. Then, in Section 3,
we provide the error analysis for the model after spatial semidiscre-
tization based on inf–sup stable finite element pairs for velocity and
pressure. In Section 4 we specify the subgrid model for the case of
homogeneous isotropic turbulence. Then, Section 5 is devoted to the
application of the approach to the standard benchmark of decaying
homogeneous isotropic turbulence. Finally, we summarize the results
in Section 6 and give some conclusions.

2. A modified projection-based finite element variational
multiscale method

2.1. Preliminaries

Let Ω⊂R3 be a bounded domain. Standard notations are used for
Lebesgues spaces Lp(Ω) and Sobolev spacesWm,p(Ω),m∈N, 1≤p≤∞,
together with the corresponding norms ||·||Lp(Ω) and ||·||Wm,p(Ω). The
inner product in [L2(Ω)]3 will be denoted by (∙,∙). A similar notation
will be used on subdomains DpΩ. For clarity we write ||·||0 for the L2

norm ||·||L2(Ω) of the whole domain Ω.
For a normed space Xwith functions defined onΩ, let Lp(0, t; X) be

the space of all functions defined on (0, t)×X with finite norm

∥u∥Lp 0; t;Xð Þ : = ∫t

0
∥u∥pXds

� �1=p
; 1≤ p b∞

and with the obvious modification for p=∞.
Setting V=[H0

1(Ω)]3 and Q=L
*
2(Ω):={q ∈ L2(Ω): ∫

Ω
q dx=0}, we

consider the variational formulation of the Navier–Stokes equations:
find u: [0, T]→V and p: (0, T]→Q satisfying

ð∂tu; vÞ + ð2νDu;DvÞ + bS u;u; vð Þ− p;∇ · vð Þ = f; vð Þ ∀v∈V ;
q;∇ · uð Þ = 0 ∀q∈Q:

ð2Þ

Here, the skew-symmetric trilinear form bS u; v;wð Þ : = 1
2

u ·∇ð Þv;wð Þ− u · ∇ð Þw; vð Þ½ � has the important property bS(u.v, v)=
0 for all u, v∈V.

For the present analysis, we will use Korn's inequality with constant
CKo and the Poincaré–Friedrichs inequality with constant CF such that

jj∇vjj0≤CKojjDvjj0 and jjvjj0≤CF jj∇vjj0 ∀v∈V : ð3Þ

Remark 2.1. The analysis of this paper can be applied in the case of
periodic boundary conditions for the velocity as well. The proof for
Korn's inequality under such conditions is very similar to the case
of no-slip boundary conditions, see Ref. [28]. Please notice that the
application of the VMS approach to the case of decaying homogeneous
isotropic turbulence requires such periodic boundary conditions. It
seems also possible to extend the analysis to cases where no-slip
boundary conditions and periodic boundary conditions appear simul-
taneously, e.g. in channel flows.

2.2. Variational multiscale method

Let Th be an admissible triangulation of Ω in the usual sense, see
Ref. [8], with maximal diameter hN0 of the mesh cells K∈Th. The FE
spaces Vh×Qh⊂V×Q of the basic Galerkin FEmethodwill be standard
inf–sup stable velocity–pressure spaces, i.e. with

inf
qh∈Q hn 0f g

sup
vh∈Vh∖ 0f g

qh;∇ · vhð Þ
jjqhjj0jj∇vhjj0

≥β N 0 ð4Þ

where β is h-independent. The Galerkin FE method reads: find uh:
[0, T]→Vh, ph: (0, T]→Qh such that

∂tuh; vhð Þ + 2νDuh;Dvhð Þ + bS uh;uh; vhð Þ− ph;∇ · vhð Þ = f; vhð Þ ∀vh∈Vh;
qh;∇ · uhð Þ = 0 ∀qh∈Qh :

For turbulent flows, let a three-scale decomposition of the flow
and pressure fields be given by

v = vh + ṽh + v̂ ∀v∈V; q = qh + q̃h + q̂ ∀q∈Q:

We search for the resolved scales (vh, qh):=(v̄̄h+ṽh, qh+ q̃h)∈Vh×
Qh⊂V×Q. The influence of the unresolved small velocity scales (v̂h, q̂h) on
the resolved small scaleswill bemodeledusing a variant of the variational
multiscale approach of Ref. [20], Section 3. To this goal, we define the
following.

Definition 2.2. Let TH be the triangulation of a coarser grid, i.e. H≥h.
Then the finite element space LH of coarse scales of the deformation
tensor is

0f gpLHpDVhpL := L = lij
� �

j lij = lji∈L2 Ωð Þ∀i; j∈ 1;2;3f g
n o

:

Within this article we assume that Th is a conforming refinement of
TH. A possible choice of the space LH with H=h will be discussed in
Section 4. In particular, an adaptive choice of LH, which varies on TH,
is not excluded, see Ref. [17].

A first version of the VMS model reads: find uh: [0, T]→Vh, ph:
(0, T]→Qh, GH: (0, T]→LH such that

∂tuh; vhð Þ + 2νDuh; Dvhð Þ + bS uh; uh; vhð Þ− ph;∇ · vhð Þ
+ νT uhð Þ Duh−GHð Þ;Dvhð Þ = f; vhð Þ

qh;∇ · uhð Þ = 0
GH−Duh; LHð Þ = 0

∀vh∈Vh;
∀qh∈Qh ;
∀LH∈LH:
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