Author's Accepted Manuscript

Oxygen Permeation and Stability Study of $(La_{0.6}Ca_{0.4})_{0.98}(Co_{0.8}Fe_{0.2})O_{3-\delta}$ Membranes

M. Salehi, M. Søgaard, V. Esposito, S.P.V. Foghmoes, E.S. Persoon, M. Schroeder, P.V. Hendriksen

www.elsevier.com/locate/memsci

PII: S0376-7388(17)31049-9

DOI: http://dx.doi.org/10.1016/j.memsci.2017.07.050

Reference: MEMSCI15455

To appear in: Journal of Membrane Science

Received date: 12 April 2017 Revised date: 9 July 2017 Accepted date: 27 July 2017

Cite this article as: M. Salehi, M. Søgaard, V. Esposito, S.P.V. Foghmoes, E.S. Persoon, M. Schroeder and P.V. Hendriksen, Oxygen Permeation and Stability Study of (La_{0.6}Ca_{0.4})_{0.98}(Co_{0.8}Fe_{0.2})O_{3-δ} Membranes, *Journal of Membran Science*, http://dx.doi.org/10.1016/j.memsci.2017.07.050

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Oxygen Permeation and Stability Study of $(La_{0.6}Ca_{0.4})_{0.98}(Co_{0.8}Fe_{0.2})O_{3-\delta}$ Membranes

M. Salehi^{1,2*}, M. Søgaard^{1,3}, V. Esposito¹, S.P.V. Foghmoes¹, E.S. Persoon⁴, M. Schroeder⁴ and P.V. Hendriksen^{1*}

¹Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark

² Current address: The Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany

³ Current address: Meneta Danmark ApS & Meneta Advanced Shims Technology A/S Kirkegyden 52, DK-5270 Odense N, Denmark

⁴ Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany

*Corresponding authors:

M. Salehi, E-mail address: chemehdi3333@gmail.com

P.V. Hendriksen, E-mail address: pvhe@dtu.dk

Abstract

The perovskite-type oxide (La_{0.6}Ca_{0.4})_{0.98}(Co_{0.8}Fe_{0.2})O_{3-δ} (LCCF) was investigated for use as oxygen separation membrane. A 25μm thick dense membrane on a porous LCCF support with a thickness of around 175 μm was prepared by a tape casting and lamination process. The optimum sintering temperature of the component was established to be 1050°C by analysis of microstructures of membranes sintered at different temperatures. Scanning electron microscopy (SEM) examination of cross-sections of the sintered membrane showed that it consisted of two phases, the main phase being enriched in calcium (Ca) and depleted in lanthanum (La), relative to the nominal

Download English Version:

https://daneshyari.com/en/article/4988638

Download Persian Version:

https://daneshyari.com/article/4988638

<u>Daneshyari.com</u>