Author's Accepted Manuscript

Influence of the co-ions on the transport of sulfate through anion exchange membranes

T. Benvenuti, M. García-Gabaldón, E.M. Ortega, M.A.S. Rodrigues, A.M. Bernardes, V. Pérez-Herranz, J. Zoppas-Ferreira

PII: S0376-7388(17)30671-3

DOI: http://dx.doi.org/10.1016/j.memsci.2017.08.021

Reference: MEMSCI15487

To appear in: Journal of Membrane Science

Received date: 10 March 2017 Revised date: 27 July 2017 Accepted date: 9 August 2017

Cite this article as: T. Benvenuti, M. García-Gabaldón, E.M. Ortega, M.A.S. Rodrigues, A.M. Bernardes, V. Pérez-Herranz and J. Zoppas-Ferreira, Influence of the co-ions on the transport of sulfate through anion exchange membranes, Journal of Membrane Science, http://dx.doi.org/10.1016/j.memsci.2017.08.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of the co-ions on the transport of sulfate through anion exchange membranes

- T. Benvenuti ^{a,1}; M. García-Gabaldón ^b; E. M. Ortega ^b; M.A.S. Rodrigues^c; A. M. Bernardes ^a, V. Pérez-Herranz^b; J. Zoppas-Ferreira ^a
- ^a LACOR, PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor 4, Prédio 43426, Campus do Vale, 91509-900 Porto Alegre, RS, Brazil
- ^b IEC Group, Departament d'Enginyeria Quimica i Nuclear, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, P.O. Box 22012, E-46071, Spain.
- ^c Instituto de Ciências Exatas e Tecnológicas, Universidade FEEVALE, RS 239, 2755, B.Vila Nova, CEP: 93.352-900 Novo Hamburgo, RS, Brazi.l

Abstract

The increasing demand for clean industrial processes has intensified the use of electrodialysis (ED) in the treatment of metal containing effluents from plating processes. Nickel rinsewater is a multicomponent solution that can be treated by ED in order to recover chemicals and reuse water. The investigation of the different phenomena involved in the transport of anions through anion-exchange membranes in this wastewater has been performed in different synthetic solutions by chronopotentiometry. Parameters like the limiting current density (i_{lim}), the plateau length (ΔU_m), the resistance of the ohmic region (R_{ohm}) and the resistance of the overlimiting region (R_3) were also determined. Even though an anion exchange membrane (AEM), the limiting current density was affected by the proton leakage phenomena, indicated that the proton H^+ has a greater effect than the other co-ions (Ni^{2+} , Mg^{2+} and Na^+). Ohmic resistances were reduced and plateau lengths were increased in the presence of protons. For salts solutions (without acid) the highest diffusion coefficients and lowest co-ion hydrated radii gave the highest plateau lengths and i_{lim} , but the lowest R_{ohm} .

Keywords: Anion-exchange membrane. Sulfate anion transport. Proton leakage. Coion effect

-

¹ Corresponding author: benvenuti.tatiane@gmail.com

Download English Version:

https://daneshyari.com/en/article/4988646

Download Persian Version:

https://daneshyari.com/article/4988646

<u>Daneshyari.com</u>