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A new robust and efficient approach for modeling discrete cracks in meshfree methods is described. The
method is motivated by the cracking-particle method (Rabczuk T., Belytschko T., International Journal for
Numerical Methods in Engineering, 2004) where the crack is modeled by a set of cracked segments.
However, in contrast to the above mentioned paper, we do not introduce additional unknowns in the
variational formulation to capture the displacement discontinuity. Instead, the crack is modeled by splitting
particles located on opposite sides of the associated crack segments and we make use of the visibility method
in order to describe the crack kinematics. We apply this method to several two- and three-dimensional
problems in statics and dynamics and show through several numerical examples that the method does not
show any “mesh” orientation bias.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of a large set of evolving cracks by finite element or
meshfree methods still poses substantial difficulties. Two classes of
methods for such problems are typically used. The first class of
methods enforces crack path continuity. Here we can classifymethods
into two further classes: methods that can have embedded cracks and
methods that cannot have embedded cracks. Interelement separation
methods ([23,43,69–71]) belong to the latter group. In interelement
separation models, cracks are only allowed to develop along existing
interelement edges. This endows the method with comparative
simplicity, but can result in an overestimation of the fracture energy
when the actual crack paths are not coincident with element edges.
The results severely depend on the shape and mesh orientation of the
mesh. This mesh dependence can only be alleviated by excessive
remeshing that is computationally expensive.

Methods that are able to embed the discontinuity, i.e. the crack, in
the element are embedded elements [1,12,39–41], the extended finite
element method (XFEM) [8,19,21,22,36] or the generalized finite
element method (GFEM) [65]. In embedded elements, the crack can
propagate only one element at a time and the cracks open piecewise
constant though novel approaches also allow the crack to open
piecewise linear [34]. Embedded elements principally allow the crack
path to be non-continuous. However, if crack path continuity is not

enforced in embedded elements, it is well known that the results will
depend on the mesh orientation bias [37].

In the extended finite element method, the crack can open linearly
(in case of linear shape functions) and non-linearly (in case of higher
order shape functions). This requires the enforcement of crack path
continuity since the crack has to close at its tip. The crack is usually
described by level sets though this is not mandatory. When many
cracks occur and when problems such as bifurcating cracks and
joining cracks are considered, methods that enforce crack path
continuity become cumbersome. Tracing the crack is one of the
most difficult tasks when crack path continuity is enforced, especially
in 3D. One difficulty is to distinguish between crack propagation and
crack initiation. Another difficulty in dynamic applications is to decide
when and whether a crack branches or not.

Crack propagation typically occurs when cracking is detected at a
material point with a certain radius around the crack front while crack
initiation occurs if cracking is detected outside that given radius.While
this is unproblematic in quasi static applicationswith few cracks, it can
cause severe difficulties in dynamic applications with many cracks.

To consider branching cracks, let us consider exemplary Fig. 1a.
First of all, crack branching within a single element, Fig. 1b, requires
the design of special elements as described e.g. in Daux et al. [25] and
Belytschko [17]. Secondly, to the best of our knowledge, only
empirical models exist in order to decide whether a crack branches
or not. These models have to be used with care. The authors for
example have used in [51,55] the deviation in the crack orientation in
front of the crack tip as criteria for crack branching. Though we do not
present a solution to this question and basically adopt similar criteria,
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we avoid the problems of modeling the crack surface (explicitly or
implicitly). One difficulty that occurs often in dynamic simulations is
that the cracking criteria are often met at several sampling points in
front of the crack tip simultaneously. It can also occur that the
detected crack orientation of the new branches is not consistent with
the old crack tip or the estimated crack speed. The problem gets even
more complicated in three dimensions.

The situation in meshfree methods is similar. Most meshfree
methods consider the crack as a continuous surface, [9,10,14,15,32].
Hence, the difficulties inmeshfreemethods are similar as compared to
XFEM though no special treatment for “branched elements” has to be
considered. However, the difficulty in deciding if crack branching or
crack initiation occurs still remains. Usually, the cracking criteria in a
certain radius around the crack tip are checked and if cracking is
detected within this radius, the crack is assumed to branch, otherwise
crack initiation is assumed.

Recently, methods have been proposed that do not enforce crack
path continuity [26,47,58]. Though thesemethods are less accurate than
methods that enforce crack path continuity, they are easier to
implement and usually better suited for problems with excessive
cracking since crack branching and crack junctions happen automati-
cally. Also the problemof representing the crack surface can be avoided.

This paper is motivated by the cracking-particle method [47] where
the crack was modeled by a discontinuous enrichment that can be
arbitrarily aligned in the body at each particle (or node). The model of
a continuous crack then consists of a set of contiguous cracked
particles. In Rabczuk and Belytschko [48], it was shown that a
discontinuous enrichment of cracked particles is not sufficient and
particles in the blending domain were excluded in the approximation
of the discontinuous displacement field. Within this paper, we follow
the idea of modeling the crack as set of cracked particles. However, in
contrast to the cracking-particle method, we do not introduce
additional unknowns in the variational formulation to capture the
displacement discontinuity. Instead, the particles, where cracking is
detected, are split into two particles lying on opposite sides of the
crack. To capture the jump in the displacement field, the shape
functions of the particles adjacent to the cohesive crack segments are

cut across the crack boundary similar to the visibilitymethod, thatwas
first proposed by Belytschko et al. [13], see also [14,15,42]. An effective
implementation of the visibility method is given e.g. in Rabczuk and
Belytschko [46]. The major advantage of the proposed method
compared to the approach in [47] is that no additional unknowns
need to be introduced. This allows the mass matrix to be diagonalized
easily by a simple row-sum procedure (or other methods such as local
reconstruction of the Voronoi cell). The method will be applied to
several two- and three-dimensional problems in statics and dynamics.
The method is of the same accuracy as the cracking-particle method. It
will be shown that the method does not show any “mesh” orientation
bias though no crack path continuity is imposed.

The article is arranged as follows: The governing equations and the
element-free Galerkin (EFG) method are given in Sections 2 and 3,
respectively. In Section 4, we explain the new cracking concept. The
discrete linearmomentumequation and the cracking criterion are given
in Sections5 and6. InSection7,wewill presenta cohesive law that takes
dynamic effects in the fracture energy into account. In Section 8 we
apply the method to several static and dynamic problems: a simple
problem to examine locking effects, several prestressed concrete beams
under four-point-bending, the Kalthoff problem, the fragmenting ring
problem and concrete slabs under impact and explosive loading. Some
of these results are compared to experimental data or other results from
the literature.

2. Governing equations

Let us consider a bodyΩ inℜ3 with boundary Γ; their images in the
initial state are the open setΩ0 and Γ0, respectively. The strong form of
the linear momentum equation in a Total Lagrangian description is:

∇0 · P + ϱ0b = ϱ0ü in Ω05 Γ
c
0 ð1Þ

where P is the nominal stress tensor (see [18] for details), b are the
body forces, X are the material coordinates, ϱ0 is the initial mass
density, ∇0 is the gradient operator with respect to the material
coordinates, superimposed dots indicate material time derivatives or
time derivatives depending on the context, Γ0c is the crack surface and
Ω0 is the domain of the body in the initial configuration. For static
applications in Section 1, the inertia term vanishes. The boundary
conditions are

n0 · P = t0 on Γt0 ð2Þ

u = u on Γu0 ð3Þ

nc
0 · P− = nc

0 · Pþ = tc0 on Γc0 ð4Þ

where ū̄ and t̄̄0 are the prescribed displacements and tractions,
respectively, t0c are the cohesive forces across the crack, n0

c is the
normal to crack as shown in Fig. 2; Γ0=Γ0c∪Γ0t ∪Γ0u and Γ0c∩Γ0t∩Γ0u=∅
where Γ0c is the crack surface.

3. The element-free Galerkin (EFG) method

Weemploy the EFGmethod,where an approximation in a Lagrangian
description is given by

u X; tð Þ = pT Xð Þa X; tð Þ ð5Þ

where X are the material coordinates, t is the time and we have
chosen p to consist of linear basis functions p(X)={1 X Y Z}∀X∈ℜ3.
Minimizing

J = ∑
I∈S

pT
I Xð Þa X; tð Þ−uI tð Þ

� �2
W X−XI ;hð Þ ð6Þ

Fig. 1. a) Single crack that crosses several elements; b) crack branching (red element) that
requires specially designed element formulations.
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