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The implementation of an h-adaptive element-free Galerkin (EFG) method in the framework of limit analysis
is described. The naturally conforming property of meshfree approximations (with no nodal connectivity
required) facilitates the implementation of h-adaptivity. Nodes may be moved, discarded or introduced
without the need for complex manipulation of the data structures involved. With the use of the Taylor
expansion technique, the error in the computed displacement field and its derivatives can be estimated
throughout the problem domain with high accuracy. A stabilized conforming nodal integration scheme is
extended for use in error estimation and results in an efficient and truly meshfree adaptive method. To
demonstrate its effectiveness the procedure is then applied to plates with various boundary conditions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Limit analysis makes use of the fundamental theorems of plastic
analysis to provide a powerful means of estimating the maximum
load sustainable by a solid or structure. Mathematical programming
techniques can often be applied to permit the collapse load to be
determined directly. In recent years efforts have focussed principally
on the development of efficient and robust numerical limit analysis
tools of potential use to engineers working in practice, which either
use continuous (e.g. using finite element [1–7] or meshless [8–10]
methods), semi-continuous [11] or truly discontinuous [12] repre-
sentations of the relevant field variables. However, the accuracy of
numerical limit analysis solutions is highly affected by local
singularities arising from localized plastic deformations [13]. In
order to achieve accurate solutions automatic h-refinement is often
performed, so that the resolution of the spatial discretization is
refined in plastic zones. Automatic finite element mesh refinement
based on both stress and strain fields has been previously proposed
[14], where elements are candidates for refinement if the strain tensor
is non-zero. Alternatively, adaptive procedures based on a posteriori
error estimates to measure the local and global errors associated with
the interpolation have been developed for limit analysis problems. A
directional error estimate using recovery gradients and/or the Hessian
of mixed finite element solutions was proposed in [13]. The scheme
was then adapted to lower bound limit analysis by using quasi-
velocities and plastic multipliers from the dual solution [15]. Using
solutions of the lower and upper bound problem in combination,

another effective error estimate was proposed in [16,17]. These
techniques have been used successfully for various 2D problems.

Meshfree methods are very attractive computational techniques
due to their flexibility, e.g. no nodal connectivity is required. The
naturally conforming property of meshfree approximations offers
considerable advantages in adaptive analysis. Nodes can easily be
added and removed without the need for complex manipulation of
the data structures involved. Since error estimates for finite elements
are not always directly transferable to meshfree methods, various
approaches have been proposed [18–23]. Effective approaches to
estimate the interpolation/approximation error were proposed in
[20,21,24,25]. The approximation error in the computed displacement
field and its derivatives can be evaluated with high accuracy using a
Taylor expansion of the relevant field variable. It is also shown in [21]
that this estimate is generally suitable for problems with high stress
and strain gradients and singularities. While these approaches have
been developed for structuredmeshfree particle methods using Gauss
integration, it is also desirable to develop an efficient method for
general irregular nodal layouts. In this paper the error density in a
representative nodal cell can be determined using smoothed values of
the displacement derivatives. This not only results in a truly meshfree
method but also reduces the effort required to calculate displacement
derivatives in the error estimate. Furthermore, since the Voronoi
diagram for a set of nodes is unique, properties of Voronoi cells can be
conveniently used as a reference for refinement strategies and for
determining locally the size of the domain of influence.

In the framework of meshfree methods, it is advantageous if the
problem under consideration can be solved by evaluating quantities at
the nodes only [26–32]. The smoothing technique proposed in [28] is
one of the most efficient nodal integration methods available, and has
been applied successfully to various analysis problems [9,10,33–35].
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In this technique nodal values are determined by spatially averaging
field values using the divergence theorem. In other words, the domain
integrals are transformed into boundary integrals to avoid the
evaluation of the derivatives of the meshfree shape functions at the
nodes, where they vanish, thus eliminating spatial instability problems.
In this paper the range of applicability of the smoothing technique is
extended by applying it to a kinematic limit analysis formulation
incorporating error estimation.

The objective of this paper is to develop a meshfree h-adaptivity
procedure for limit analysis problems. The layout of the paper is as
follows: Section 2 briefly describes a kinematic upper-bound limit
analysis formulation for plates using the element-free Galerkin (EFG)
method and stabilized conforming nodal integration (SCNI). A cell-
based error estimate for the displacement field and its derivatives is
presented in Section 3. Based on the error estimate discussed in
Section 3, error indicators and refinement strategies are introduced in
Section 4. Numerical examples are provided in Section 5 to illustrate
the performance of the proposed procedure.

2. Limit analysis of plates — discrete kinematic formulation

In this section the kinematic formulation for the plate limit
analysis problem is outlined, together with details of the EFG method
and the second-order cone programming (SOCP) problem formula-
tion. More details can be found in [9].

Consider a rigid-perfectly plastic plate governed by the von Mises
yield criterion, subjected to a distributed load α+q and with a
constrained boundary Γu. The upper-bound limit analysis problem for
plates can be written as

αþ = min∫Ω mp∣∣CT κ̇∣∣L2 Ωð ÞdΩ
s:t

ð1aÞ

κ̇ = − ∂2 u̇h

∂x2
∂2u̇h

∂y2
2
∂2 u̇h

∂x∂y

( )T

ð1bÞ

∫Ωqu
h dΩ = 1 ð1cÞ

accompanied by appropriate boundary conditions, where q is unit load
per area,α+ is a scalar collapse loadmultiplier,mp=σ0t

2/4 is the plastic
moment of resistance per unit width of a plate of thickness t and C is a
matrix that depends on the yield criterion involved. For the von Mises
criterion,
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The approximated transverse displacement uh(x) is computed
using a Moving Least Squares (MLS) technique and is expressed as

uh xð Þ = ∑
n

I=1
ΦI xð ÞuI ð3Þ

The MLS shape functions ΦI(x) are given as [36,37]

ΦI xð Þ = pT xð ÞA−1 xð ÞBI xð Þ ð4Þ

with

A xð Þ = ∑
n

I=1
wI xð Þp xIð ÞpT xIð Þ ð5Þ

BI xð Þ = wI xð Þp xIð Þ ð6Þ

where n is the number of nodes; p(x)=[1, x, y, xy, x2, y2]T is a
quadratic basis function andwI(x) is an isotropic quartic splineweight
function associated with node I.

Introducing stabilized conforming nodal integration [28],
smoothed curvature rates κ̇(xj) at nodal point xj are written as
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where Φ̃ is the smoothed version ofΦ; aj, Γj and ns are respectively the
area, boundary and the number of segments of a Voronoi nodal
domain Ωj as shown in Fig. 1; xjk and xjk+1 are the coordinates of the
two end points of boundary segment Γjk which has length lk and
outward surface normal nk.

The kinematic limit analysis problem for plates can now be written
in the form of a SOCP problem as follows:

αþ = min mp∑
n

j=1
ajtj

s:t

ð11aÞ

Aeqv = beq ð11bÞ

−CTGv = ri ð11cÞ

∣∣ri∣∣≤ti; i = 1;2;…;n ð11dÞ

Fig. 1. Geometry of a representative nodal domain.
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