Author's Accepted Manuscript

Tunable permeability and selectivity: Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating

T. Lohaus, P. de Wit, M. Kather, D. Menne, N.E. Benes, A. Pich, M. Wessling

www.elsevier.com/locate/memsc

PII: S0376-7388(16)32597-2

DOI: http://dx.doi.org/10.1016/j.memsci.2017.05.052

Reference: MEMSCI15286

To appear in: Journal of Membrane Science

Received date: 22 December 2016

Revised date: 5 April 2017 Accepted date: 16 May 2017

Cite this article as: T. Lohaus, P. de Wit, M. Kather, D. Menne, N.E. Benes, A. Pich and M. Wessling, Tunable permeability and selectivity: Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2017.05.052

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Tunable permeability and selectivity: Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating

T. Lohaus^a, P. de Wit^b, M. Kather^c, D. Menne^a, N.E. Benes^b, A. Pich^c, M. Wessling^{a,c,*}

^aRWTH Aachen University, Chemical Process Engineering, Turmstrasse 46, D-52064 Aachen, Germany
^bFilms in Fluids, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE

Enschede, The Netherlands

^cDWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstrasse 50, D-52074 Aachen, Germany

Abstract

In recent years, the interest in responsive materials to design membranes with tunable properties increased in order to customize membranes for adaptable process requirements. The majority of development methods require external adjustment of the feed stream temperature to achieve a responsiveness of the membrane. In this study, we propose a concept in which the temperature of the membrane itself can be directly controlled to initiate a response of the membrane surface. We use an electrically conductive membrane composed of silicon carbide and carbon on which thermo-responsive poly(*N*-vinylcaprolactam) (P-VCL) microgels have been immobilized. By controlling the applied electrical power to the membrane, the permeability and selectivity of the membrane can be adjusted.

Immobilization of the microgels on the membrane has been realized via filtration coating. The microgel coating is stable with no change in permeability, hence no microgel loss, over time. Also during backwash, the permeability remains constant. Thermo-responsiveness remains reversible and stable in all conducted experiments. The controlled hydraulic resistance of the membrane behaves according to the hydrodynamic radius of the microgel, as a function of temperature. The electrical heating of the membrane shows to be more energy efficient compared to heating of the whole feed stream when operating in crossflow conditions, saving 14% of the consumed energy. The retention of a 200 kDa dextrane can be controlled in a range of 10% to 80% by heating the membrane.

Keywords: Tunable permeability, heatable membrane, adaptive selectivity, thermo-responsive P-VCL microgel

1. Introduction

Our natural environment is a complex and highly efficient system of interacting structures. One of its most preeminent characteristics is the ability of biological materials to regenerate and reverse their behavior as a response to external stimuli. Over the last decades, research interest in synthesis of smart or stimuli-responsive materials has expanded vastly. Stimuli-responsive polymers achieve attention for undergoing physico-chemical or structural

Email address: manuscripts.cvt@avt.rwth-aachen.de (M. Wessling)

^{*}manuscripts.cvt@avt.rwth-aachen.de

Download English Version:

https://daneshyari.com/en/article/4988804

Download Persian Version:

https://daneshyari.com/article/4988804

Daneshyari.com