
Sparse direct factorizations through unassembled hyper-matrices q

Paolo Bientinesi a, Victor Eijkhout b,*, Kyungjoo Kim c, Jason Kurtz d, Robert van de Geijn e

a Aachen Institute for Computational Engineering Science, RWTH Aachen, Germany
b Texas Advanced Computer Center, The University of Texas at Austin, United States
c Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, United States
d Applied Research Laboratories, The University of Texas at Austin, United States
e Computer Science Department, The University of Texas at Austin, United States

a r t i c l e i n f o

Article history:
Received 15 November 2007
Received in revised form 24 June 2009
Accepted 10 July 2009
Available online 12 August 2009

Keywords:
Factorizations
Gaussian elimination
Sparse matrices
hp-Adaptive finite elements

a b s t r a c t

We present a novel strategy for sparse direct factorizations that is geared towards the matrices that arise
from hp-adaptive Finite Element Methods. In that context, a sequence of linear systems derived by suc-
cessive local refinement of the problem domain needs to be solved. Thus, there is an opportunity for a
factorization strategy that proceeds by updating (and possibly downdating) the factorization. Our scheme
consists of storing the matrix as unassembled element matrices, hierarchically ordered to mirror the
refinement history of the domain. The factorization of such an ‘unassembled hyper-matrix’ proceeds in
terms of element matrices, only assembling nodes when they need to be eliminated. The main benefits
are efficiency from the fact that only updates to the factorization are made, high scalar efficiency since
the factorization process uses dense matrices throughout, and a workflow that integrates naturally with
the application.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many scientific applications spend a large amount of time in the
solution of linear systems, often performed by sparse direct solv-
ers. We argue that traditional matrix storage schemes, whether
dense or sparse, are a bottleneck, limiting the potential efficiency
of the solvers. We propose a new data structure, the unassembled
hyper-matrix (UHM). This data structure preserves useful informa-
tion that can be provided by the application, and that can make the
solver, as well as various other operations on the matrix, more effi-
cient. In particular, we will use this storage format to implement
an efficient sparse direct solver for hp-adaptive1 finite element
method (FEM) problems.

The improvement in efficiency will come from rethinking the
conventional approach where sparse direct solvers are used as a
black-box, where a linear system is passed as input and a solution
is returned as output. Much progress has been made on making

such a black-box procedure as efficient as possible. However, tradi-
tional solvers are intrinsically handicapped by ignoring domain
information. Furthermore, what is not exploited by such solvers
is the fact that once a solution for a given discretized problem
has been computed, modifications to this existing discretization
are made. This means that what should be the real measure of effi-
ciency is how fast a solution of a somewhat modified (refined)
problem can be computed given a factorization of the current
problem (discretization). We argue that this formulation of the
problem leads to dramatically different data structures and factor-
ization approaches, on which the existing literature on sparse di-
rect solvers has little bearing.

In this introduction we sketch the demands on a matrix storage
scheme in a FEM application, and show how traditional linear alge-
bra software insufficiently addresses these demands. In the rest of
this paper we will then show how the UHM scheme overcomes
these limitations. For the time being, we limit ourselves to sym-
metric positive-definite (SPD) problems.

1.1. The workflow of advanced FEM solvers

Adaptive discretization techniques are recognized to be the key
to the efficient and accurate solution of complicated FEM prob-
lems, for instance, problems with singularities around re-entrant
corners. (We will give a brief overview of adaptive and in particular
hp-adaptive FEM in Section 2.)

0045-7825/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2009.07.012

q This work was supported by NSF Grant #DMS-0625917. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation (NSF).

* Corresponding author. Tel.: +1 512 471 5809; fax: +1 512 475 9445.
E-mail address: eijkhout@tacc.utexas.edu (V. Eijkhout).

1 The designation ‘hp’ refers to the simultaneous refinement of the space
discretization h, and the polynomial degree p.

Comput. Methods Appl. Mech. Engrg. 199 (2010) 430–438

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2009.07.012
mailto:eijkhout@tacc.utexas.edu
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


A typical hp-adaptive FE computation proceeds as follows.

1. An initial discretization is generated to represent the given
geometry and material data.

2. The global stiffness matrix and load vector are computed, stored
either in an assembled sparse format or as unassembled ele-
ment contributions.

3. The sparse linear system is solved via a standard solver package.
Here the choice of package depends on whether the solution is
computed via a direct or iterative solver. For sparse direct solu-
tion, widely used packages include MUMPS [1,30], NASTRAN
(various commercial versions), SuperLU [12,13,26], and UMF-
PACK [8,37]. For iterative solution current favorites include
PETSc [2,3] and Trilinos [20].

4. Based on a posteriori error estimates, it is determined whether
to break or merge elements (h-refinement or unrefinement)
and/or whether to increase (or decrease) the order of approxi-
mation p. These decisions are made locally, i.e., on an ele-
ment-by-element basis, though refinement of one element
may induce surrounding elements to be refined too, in some
circumstances.

5. Steps 2–4 are repeated until a stopping criterion is met.

1.2. Shortcomings of the existing approach

There are two essential limitations with the traditional ap-
proach to FEM solvers outlined above.

One obvious problem is in Step 3, where the solver has no way
of knowing whether it was invoked before, and what the relation is
between its input data in successive invocations. Since successive
linear systems are clearly related, considerable opportunity for
efficiency is left unexplored.

There is a further problem in that, by formulating the linear sys-
tem as a matrix equation, much information about the application
is lost. This information is then laboriously, and imperfectly, recon-
structed by the graph partitioners used in sparse solver packages.

These shortcomings of the matrix-based interface are not
purely academic. In Section 2.3 we will show anecdotal evidence
that fairly simple manual preprocessing of the linear systems can
significantly improve the efficiency of a standard direct solver.
Clearly, certain knowledge of the linear system that is available
to a human can only imperfectly be discovered by a black-box sol-
ver. Our improved data structure and solver preserve and exploit
such knowledge.

1.2.1. Inflexibility in an application context
Current linear algebra software has little provision for the real-

ity that often a sequence of related linear systems is to be solved.
Even a slight change to the matrix forces a solver package to
recompute the factorization from scratch, with no information
preserved.

However, in the setting of adaptive FEM solvers, the next linear
system is often derived from the previous one by refining part of
the physical domain, either in space, or in the order of the FEM ba-
sis functions. Traditional matrix storage is not flexible enough to
accommodate insertion of matrix rows easily. Instead, a whole
new matrix needs to be allocated, with the old data copied over
or even recomputed, at considerable overhead. Furthermore, solver
packages cannot preserve parts of a factorization that are not af-
fected by such a refinement. Our UHM storage scheme remedies
both shortcomings.

While it can be argued that the use of a high-quality graph par-
titioner favors the current approach to successive substructuring
for a single solution, storing the stiffness matrix as an UHM confor-
mal to the hierarchy in the domain has the potential for greatly

reducing the cost of subsequent solves with refined data. There is
some memory overhead associated with element-by-element
(EBE) codes: anecdotal evidence suggests 30% for matrix storage
in a 2D case with low polynomial degree [6,5], and possibly more
with higher degrees, see Table 1 in [32]. However, this is out-
weighed by advantages in performance and flexibility. Also, the
overhead from EBE storage for the factorization is considerably
less.

1.2.2. Loss of application information
The representation of a matrix as a two-dimensional array of

numbers, whether stored densely or using a sparse storage format,
represents a bottleneck between the application and the solver li-
brary. Relevant application knowledge is lost, such as geometry
and other properties of the domain, various facts about the nature
of the mesh, and any history of refinement that led to the current
system of equations. Much of the development of sparse direct
solvers goes into reconstructing, algebraically, this information.

1.3. Relation to existing factorizations

Our factorization scheme contains some novel elements, fore-
most the fact that we retain the refinement history of the Finite
Element (FE) grid. Of course, there are various connections to the
existing literature. In this section we highlight a few. (For a recent
overview of the field of sparse direct factorizations, see the book by
Davis [9].)

1.3.1. Substructuring
Techniques of bisection and recursive bisection have long been

a successful strategy, although not the only one, for deriving direct
solvers. Initial research on solvers on a regular domain showed
considerable savings in storage for two-dimensional problems
[16,17]. These results have been extended to arbitrary finite ele-
ment meshes [27,28], including a proof that in the three-dimen-
sional case no order improvement exists as in the 2D case: in 2D,
the naı̈ve space bound of O(N3/2) can be improved to O(N logN);
in 3D, no reduction of the naı̈ve O(N5/3) bound is known. More re-
cently, spectral bisection techniques have been explored as a way
of deriving multiple partitioning of a set of variables
[15,18,19,22,34]. Another direction in graph partitioning is that
of partitioning methods based on space-filling curves [31,33].
These methods have been used primarily for partitioning elements
in work related to iterative solvers. Again, such techniques are
based on algebraic properties of the matrix graph, and can only
imperfectly reconstruct any division that is natural to the problem.

1.3.2. Supernodes
With the realization that Level 3 Basic Linear Algebra Subpro-

grams (BLAS [24,7]) operations are the path to high performance
in linear algebra codes (see for instance [14,4]), researchers of
sparse direct solvers have devoted considerable effort to finding
‘supernodes’: blocks of rows or columns that have similar sparsity
patterns, and can thus be tackled with dense block algorithms
[36,25] when combined. However, this block structure derives
from the elements in a Finite Element mesh, so we conclude that
the linear algebra software aims at reconstructing information that
was present in the application and was lost in the traditional solver
interface.

It is clear that a matrix representation that preserves informa-
tion about the operator and the discretization has a potential
advantage over traditional storage formats.

1.3.3. Hierarchical methods
The idea of using a tree structure in the factorization of a matrix

has occurred to several authors and in several contexts. However,

P. Bientinesi et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 430–438 431



Download English Version:

https://daneshyari.com/en/article/498884

Download Persian Version:

https://daneshyari.com/article/498884

Daneshyari.com

https://daneshyari.com/en/article/498884
https://daneshyari.com/article/498884
https://daneshyari.com

