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a b s t r a c t

A robust numerical algorithm for an Eulerian rigid-viscoplastic crystal model that accounts for high-
strain rates, large strains, and large material and lattice rotations, was developed. The viscoplastic law
is obtained from Schmid law by using an overstress approach; the numerical instabilities associated to
the classical Norton law are thus eliminated.

A time implicit (backward) Euler scheme for time discretization, was used. At each time iteration, a four
steps iterative algorithm was proposed. To handle the non-differentiability of the plastic terms an itera-
tive decomposition–coordination formulation coupled with the augmented Lagrangian method was
adopted. This formulation was modified to fit to the crystal (non-isotropic) viscoplastic model, for which
the stress deviator is not coaxial with the rate of deformation tensor. The proposed algorithm is consis-
tent and permits to solve alternatively, at each iteration, the equations for the velocity field and for the
lattice orientation. A mixed finite element-finite volume strategy was adopted: the equation for the
velocity field is discretized using the finite element method while a finite volume method, with an
upwind choice of the flux, is adopted for the hyperbolic equation related to the lattice orientation.

Several two-dimensional boundary value problems are selected to analyze the robustness of the
numerical algorithm. The influence of the mesh and of the time step on simulation of the in-plane flow
of a fcc crystal in an equal channel angular die extruder was investigated. The transitional flow of a grain
embedded in a parent crystal was computed. The grains interaction during channel die compression of a
multi-crystal was analyzed using an ALE description.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The description of plastic flow by crystallographic slip in metals
with cubic crystals structure dates back to the pioneering work of
Taylor and Elam [34,35] and Taylor [36,37] that established the
experimental laws that are the foundation of crystal mechanics.
A general kinematics of the finite deformation of elastic–plastic
single crystals that includes lattice distortion was first given by
Rice [27] and may be found in equivalent forms in [15,2] (see also
the overviews [3,14,31,7,41]).

In some processes, such as metal cutting, extrusion, penetra-
tion, etc., large deformations, high pressures, and high-strain rates
may occur. Thus, for computational purposes, an Eulerian descrip-
tion seems to be most suitable. In current rate-dependent models a
FE Lagrangean description is generally adopted (e.g. [21,29]);
hence the large lattice rotations that occur in dynamic flow regime
may not be accurately captured. As concerns the flow rule, a Nor-
ton-type power-law is generally used. This law, adequate for the

description of low strain rate behavior, is very stiff and predicts
unrealistic slip rates (see for example [24,4]). There have been a
lot of efforts in order to overcome the severe numerical instabili-
ties that arise in the integration of the Norton-type power-law
model (see reviews of the computational strategies in [8,19]).

An Eulerian rate-dependent single crystal model that accounts
for high-strain rates, large strains and rotations was developed in
[5]. The viscoplastic law, as well as the evolution equations for
the lattice, are written in terms of vectorial and tensorial quantities
associated with the current configuration. The viscoplastic law is
obtained from Schmid law using an overstress approach. The
expression of this viscoplastic law is motivated by the micrody-
namics of crystal defects (see [38]). By adopting such a law, the
numerical instabilities that arise in the integration of the classical
Norton law are eliminated.

The main goal of this paper is to develop a robust Eulerian
numerical algorithm for the rigid-viscoplastic single crystal model
proposed in [5]. We will use a time implicit (backward) Euler
scheme for time discretization, which gives a coupled system of
nonlinear equations for the velocities and lattice orientation fields.
At each time iteration, an iterative algorithm is developed to solve
these nonlinear equations. Specifically, a mixed finite element and
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finite volume strategy is proposed. The equations for the velocity
field are discretized using the finite element method, while a finite
volume method, with an upwind choice of the flux, is adopted to
solve the hyperbolic equations that describe the evolution of the
lattice orientation.

To handle the non-differentiability of the plastic terms an iter-
ative decomposition–coordination formulation coupled with the
augmented Lagrangian method (see [13,9]) is adapted. Since in
crystal (anisotropic) plasticity there is non co-axiality between
the stress deviator and the rate of deformation, the original meth-
od, developed for the Bingham model [13,9], cannot be used. We
have to find firstly the decomposition of the strain rate into the slip
rates of the crystal, to introduce the slip rate multipliers and to
work with the decomposition–coordination formulation at the le-
vel of each slip system. It is worth noting that this type of algo-
rithm permits also to solve alternatively, at each iteration, the
equations for the unit vectors that define the lattice orientation.
If the Eulerian domain has time variations then the above algo-
rithm could also be adapted to an ALE (Arbitrary Eulerian–Lagran-
gien) description of the crystal evolution.

Let us outline the content of the paper. In Section 2 the bound-
ary value problem is stated and in Section 3 we describe the
numerical strategy. After the time discretization (Section 3.1) we
present in Section 3.2, the four steps of the proposed iterative algo-
rithm. We prove that the iterative algorithm is consistent (i.e. it
provides a solution if the convergence is achieved). In Section 4
we reformulate the rigid-viscoplastic constitutive equations for
the in-plane deformation. The resulting boundary value problem
has a more simpler form: only one differential equation, involving
the orientation of one composite in-plane slip system, is necessary
to describe the lattice evolution. Several two-dimensional bound-
ary value problems are selected to analyze the robustness of the
numerical algorithm and the predictive capabilities of the mechan-
ical model. In Section 5 we simulate the in-plane flow of a fcc crys-
tal in an equal channel angular extruder. The influence of the mesh
and of the time step are investigated. Both the stationary flow of
single crystal and the flow of a grain embedded in a parent crystal
are further analyzed. From a numerical point of view, the presence
of grains means that the initial condition contains discontinuities
(shocks) which propagate in the parent crystal. Section 6 concerns
the ALE computations for the channel die compression of a fcc
crystal. Here, we investigate the grains interaction by analyzing
the compression of a bi-crystal and of a sixteen grains multi-
crystal.

2. Statement of the boundary value problem

We begin by presenting the equations governing the motion in
a domain D ¼ DðtÞ of an incompressible rigid-viscoplastic crystal.
The momentum balance law in the Eulerian coordinates reads

qð@tv þ v � $vÞ � div sþrp ¼ qf in D; ð1Þ

where the velocity v : ½0; T� �D ! R3, the deviator of the Cauchy
stress tensor s : ½0; T� �D ! R3�3

S and the pressure (mean stress)
p : ½0; T� �D ! Rðr ¼ s� pI is the Cauchy stress tensor) are the un-
knowns fields, while the mass density q > 0 and the body forces f
are considered known.

The gradient of the velocity field rv is decomposed into its
symmetric part (rate of deformation) DðvÞ and its antisymmetric
part (spin tensor) WðvÞ through

DðvÞ ¼ 1
2

$v þ $tv
� �

; WðvÞ ¼ 1
2
rv �rTv
� �

:

The incompressibility condition (mass balance law) reads

divv ¼ 0 in D: ð2Þ

The lattice orientation of the crystal is modeled through the slip
direction distribution bs : ½0; T� �D ! R3 and the slip plane normal
distribution ms : ½0; T� �D ! R3. We denote by Ms;Rs the symmet-
ric and the skew part of their tensorial product:

Ms ¼
1
2

bs �ms þms � bsð Þ; Rs ¼
1
2

bs �ms �ms � bsð Þ: ð3Þ

In Fig. 1 are represented the twelve crystallographic systems
fðbs;MsÞgN

s¼1(i.e. 12 pairs of glide directions and glide plane nor-
mals) for a fcc. crystal in the crystal basis fc1; c2; c3g. Note that
the crystal basis orientation could vary with respect to time t or
with the Eulerian position x 2 D.

In applications involving large deformations and high-strain
rates, the elastic component of the deformation is small with re-
spect to the inelastic one. That is why it can be neglected it here
and a rigid-viscoplastic approach adopted (e.g. [16,20,18]). Since
the viscoplastic deformation is due to slip only, the rate of defor-
mation D can be decomposed into the N slip systems ([27,38]) as

DðvÞ ¼
XN

s¼1

_csMs; ð4Þ

where _cs is the slip rate on the system s.
Concerning the inelastic flow, a Perzyna-like viscoplastic law,

which relates the slip rate _cs to the resolved stress ss ¼ s : Ms, is
considered (see [5]):

_cs ¼
1
gs
j ss j �scs½ �þsignðssÞ; ð5Þ

where scs is the slip resistance (also called critical resolved shear
stress or CRSS), gs is the viscosity and ½x�þ ¼ ðxþ jxjÞ=2 is the posi-
tive part of x. One can use (4) and the viscoplastic law (5) for each
slip system s, to relate the rate of deformation tensor DðvÞ to the
deviator s of the Cauchy stress tensor

DðvÞ ¼
XN

s¼1

1
gs

1� scs

j s : Ms j

� �
þ

s : Msð ÞMs: ð6Þ

It is worth noting that since the resolved shear stresses ss are not
independent, the shear rates _cs given by the viscoplastic flow rule
(5) are not independent; they have to satisfy the kinematic con-
straint (4). Given the rate of deformation D, the shear rates _cs are
determined by minimizing the internal power
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Fig. 1. The 12 pairs fðbs;MsÞg12
s¼1 of slip directions and slip plane normals for a fcc

crystal.
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