
CFD-based analysis and two-level aerodynamic optimization on graphics
processing units

I.C. Kampolis, X.S. Trompoukis, V.G. Asouti, K.C. Giannakoglou *

National Technical University of Athens, Lab. of Thermal Turbomachines, Parallel CFD & Optimization Unit, P.O. Box 64069, Athens 15710, Greece

a r t i c l e i n f o

Article history:
Received 21 May 2009
Received in revised form 24 September
2009
Accepted 3 November 2009
Available online 13 November 2009

Keywords:
Graphics processing units
Computational fluid dynamics
Aerodynamic shape optimization
Evolutionary algorithms

a b s t r a c t

This paper presents the porting of 2D and 3D Navier–Stokes equations solvers for unstructured grids,
from the CPU to the graphics processing unit (GPU; NVIDIA’s Ge-Force GTX 280 and 285), using the CUDA
language. The performance of the GPU implementations, with single, double or mixed precision arithme-
tic operations, is compared to that of the CPU code.

Issues regarding the optimal handling of the unstructured grid topology on the GPU, particularly for
vertex-centered CFD algorithms, are discussed. Restructuring the existing codes was necessary in order
to maximize the parallel efficiency of the GPU implementations. The mixed precision implementation,
in which the left-hand-side operators are computed with single precision, was shown to bridge the
gap between the single and double precision speed-ups. Based on the different speed-ups and prediction
accuracy of the aforementioned GPU implementations of the Navier–Stokes equations solver, a hierarchi-
cal optimization method which is suitable for GPUs is proposed and demonstrated in inviscid and turbu-
lent 2D flow problems. The search for the optimal solution(s) splits into two levels, both relying upon
evolutionary algorithms (EAs) though with different evaluation tools each. The low level EA uses the very
fast single precision GPU implementation with relaxed convergence criteria for the inexpensive evalua-
tion of candidate solutions. Promising solutions are regularly broadcast to the high level EA which uses
the mixed precision GPU implementation of the same flow solver. Single- and two-objective aerodynamic
shape optimization problems are solved using the developed software.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The continuous increase in performance of GPUs has extended
their use from the gaming community to game physics calculations
and, lately, to number-crunching applications in the field of com-
putational physics [4,21,42]. Their increased flexibility and perfor-
mance allowed the implementation of data-parallel algorithms
that efficiently unlock their peak computational capabilities by
exceeding that of high-end CPUs, combining a great number of
floating point operations per second (GFLOPS) and high memory
bandwidth. Moreover, their mass production made them a cheap-
er, viable alternative to conventional high-performance computing
systems.

GPUs from both major manufacturers (ATI & NVIDIA) associated
with a number of software programming models (Cg [37], Brook
[7], Sequoia [15], CTM [1], CUDA [40] to mention a few of them)
are available to scientists for making GPUs appropriate to cope
with high-performance scientific applications. In this paper,
NVIDIA’s graphics cards and CUDA are used. CUDA is an extended

subset of the C language and is supported by all latest NVIDIA’s
graphics cards. It uses the GPU as a device suitable for parallel
computations with its own random access memory (device/global
memory) capable of concurrently executing a large number of
threads. The latter are grouped together into blocks; many blocks
comprise a grid. Grids of blocks execute the code (referred to as
the kernel) on the GPU, using the single instruction multiple thread
(SIMT) model. Limited shared memory (due to hardware restric-
tions) as well as synchronization instructions are available to the
threads forming the same block.

A wide range of applications which benefit from the excellent
parallel performance of GPUs can be found in the literature [42].
However, applications in computational fluid dynamics (CFD) are
still limited. In [20], a GPU implementation of the multigrid meth-
od for the solution of boundary value heat and fluid flow problems,
using the vorticity-streamfunction formulation, was presented.
Kruger and Westermann [36] proposed a framework for the imple-
mentation of explicit and implicit numerical methods on graphics
hardware (ATI 9800 graphics card) and showed applications re-
lated to the 2D wave equation and the incompressible Navier–
Stokes equations. Bolz et al. [4] describe a conjugate gradient sol-
ver for sparse matrices resulting from the use of unstructured grids

0045-7825/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2009.11.001

* Corresponding author.
E-mail address: kgianna@central.ntua.gr (K.C. Giannakoglou).

Comput. Methods Appl. Mech. Engrg. 199 (2010) 712–722

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2009.11.001
mailto:kgianna@central.ntua.gr
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


and a multigrid solver for structured grids, on NVIDIA’s Ge-Force
FX cards. Goddeke et al. [19] used many cluster nodes with NVI-
DIA’s Quadro FX4500 PCIe and addressed the issue of limited pre-
cision on GPUs (by that period of time) by applying a mixed
precision iterative refinement technique. A detailed description
of the GPU implementation of a Navier–Stokes flow solver for
structured grids was presented in [22]. In [9], this was extended
to 3D flows by laying emphasis to realistic and accurate visualiza-
tion effects for graphics applications. Implementations to com-
pressible fluid flows were firstly presented in [21]. Brandvik and
Pullan [5,6] focus on performance comparisons between GPU and
CPU codes for the solution of 2D and 3D Euler equations and re-
ported considerable speed-ups using exclusively structured grids.
Applications to complex geometries, even for hypersonic flows,
can be found in [11]. A first application in 3D unstructured grids
for inviscid, compressible flows on NVIDIA Tesla GPU is presented
in [8]. Although [8] has certain similarities to the present paper, it
is based on the cell-centered whereas this paper on the vertex-cen-
tered finite volume technique. As it will be shown as the paper
develops, there are important differences between the two
schemes as far as porting on GPUs is of concern.

In view of the above, in the present paper, a solver for the 2D
steady state, Navier–Stokes equations for compressible fluids on
unstructured grids with triangular elements, coupled with a one-
equation turbulence model, is firstly presented; the programming
details for porting the code to the GPU are discussed. The first part
of this study focuses on both single (SPA) and double (DPA) preci-
sion arithmetic GPU implementations, in order to quantify their
speed-ups compared to the CFD code running on the CPU. A mixed
precision arithmetic (MPA) implementation, which uses SPA for the
left-hand-side (l.h.s.) part of the discretized equations and DPA for
the right-hand-side terms (r.h.s., i.e. the residuals), is devised.
Below, the three GPU implementations with SPA, MPA and DPA will
be referred to as GPUSP ;GPUMP and GPUDP , respectively. The
solver running on the CPU implements DPA; the speed-ups of all
GPU-enabled variants are measured with respect to the same
CPU code. The proposed GPUMP leads to high speed-ups without
damaging the prediction accuracy of the GPUDP . A 3D Euler equa-
tions GPU-enabled solver (using SPA, MPA and DPA, too) for
unstructured grids with tetrahedral elements is also presented
and assessed, in terms of speed-ups, with the corresponding CPU
code.

The second part of this paper deals with aerodynamic shape
optimization, by exploiting the CFD software variants which have
already been ported on GPUs. In particular, the GPU-enabled flow
solvers are used as analysis tools in the context of a hierarchical
EA, to efficiently solve aerodynamic shape optimization problems.
In such a method, the search for the optimal solution(s) is consid-
erably accelerated by the combined use of (a) a low cost, low fidel-
ity flow solver ðGPUSPÞ which undertakes the exploration of the
design space on the low level and (b) a high fidelity flow solver
ðGPUMPÞ, with higher cost, which is mainly used to refine the most
promising solutions by injecting them into the high level search
algorithm. The present applications include single- and multi-
objective optimizations of a compressor cascade and an isolated
airfoil.

A final statement should be made. Nowadays, ‘‘personal
supercomputers”, i.e. clusters of CPUs and GPUs, allow a significant
amount of performance at a reasonable cost-price. The present CFD
software may certainly run on these clusters, after defining an
appropriate number of grid subsets exchanging data for physically
coincident grid nodes which reside on different grid subsets. How-
ever, this is beyond the scope of this paper. The reason is simple:
since the GPU code is used to support an EA, where candidate solu-
tions can be simultaneously and independently evaluated and due
to the limited number of available GPUs, it was decided that each

CFD code runs on a single GPU. We thus minimize the communica-
tion overhead and applications are limited by the available
memory.

2. 2D/3D CFD Implementations on GPUs

This section presents the porting of the 2D and 3D Navier–
Stokes equations solvers to the GPU. The basic features of the
time-marching Navier–Stokes flow solver (CPU implementation)
are first presented. Programming issues for the GPU implementa-
tions are then discussed by taking into consideration the specific
characteristics/architecture of the available NVIDIA graphics cards.
The section concludes with performance comparisons between
CPU and GPU for 2D and 3D, inviscid and/or turbulent steady-state
flows around an isolated airfoil, an aircraft and in a compressor
cascade.

2.1. The Navier–Stokes equations solver – implementation on CPUs

The Navier–Stokes equations for a compressible fluid are writ-
ten in vector form as

@ U
!

@t
þ @

~f inv
i

@xi
� @

~f vis
i

@xi
¼ 0; ð1Þ

with i ¼ 1;2 in 2D (i ¼ 1;2;3 in 3D) and xi the cartesian coordinates.
U
!
¼ ½.;.~u; E�T is the vector of conservative variables. The inviscid

ð~f inv
i Þ and viscous ð~f vis

i Þ fluxes are given by

~f inv
i ¼

.ui

.ui~uþ p~di

uiðEþ pÞ

2
64

3
75; ~f vis

i ¼
0
~si

ujsij þ qi

2
64

3
75; ð2Þ

where . is the density, ~u is the velocity vector, ~si ¼ ½si1; si2�T

(~si ¼ ½si1; si2; si3�T in 3D) are the viscous stresses, ~di ¼ ½di1; di2�T

(~di ¼ ½di1; di2; di3�T in 3D) the Kronecker symbols and qi ¼ k @T
@xi

the
thermal flux components.

The solution of Eqs. (1), on unstructured grids with triangular
(2D) or tetrahedral (3D) elements, is based on the vertex-centered
finite volume technique and a second-order upwind scheme for the
inviscid fluxes. On a 2D grid, Fig. 1 shows the finite volume XP de-
fined around node P; in 3D cases, finite volumes are defined in a
similar way. The integration of the governing equations over XP

gives

XP

DtP
D U
!

P
þ
X

Q2neiðPÞ
U
!

inv
PQ �U

!
v is
PQ

� �
ðabÞ ¼ 0; ð3Þ

where DtP is the local pseudo-time step and U
!

inv
PQ ;U

!
vis
PQ are the invis-

cid and viscous numerical fluxes across ab, i.e. the interface of XP

and XQ .

Fig. 1. Vertex-centered finite volume XP (hatched area) defined around node P of an
unstructured grid with triangular elements.

I.C. Kampolis et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 712–722 713



Download English Version:

https://daneshyari.com/en/article/498905

Download Persian Version:

https://daneshyari.com/article/498905

Daneshyari.com

https://daneshyari.com/en/article/498905
https://daneshyari.com/article/498905
https://daneshyari.com

