Author's Accepted Manuscript

Facile fabrication of CO₂ separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid

Zhongde Dai, Luca Ansaloni, Douglas L. Gin, Richard D. Noble, Liyuan Deng

PII: S0376-7388(16)30627-5

DOI: http://dx.doi.org/10.1016/j.memsci.2016.10.026

MEMSCI14812 Reference:

To appear in: Journal of Membrane Science

Received date: 9 June 2016 Revised date: 4 October 2016 Accepted date: 16 October 2016

Cite this article as: Zhongde Dai, Luca Ansaloni, Douglas L. Gin, Richard D Noble and Liyuan Deng, Facile fabrication of CO2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and polyamine-based ionic liquid, Journal Membrane of Science http://dx.doi.org/10.1016/j.memsci.2016.10.026

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Facile fabrication of CO_2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid

Zhongde Dai^a, Luca Ansaloni^a, Douglas L. Gin^b, Richard D. Noble^b, Liyuan Deng^{a*}
^aDepartment of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway

Abstract:

In this study, a new family of poly(ethylene glycol) (PEG)-based membranes for CO_2 separation was developed using PEG diglycidyl ether (PEGDE) cross-linked with a low-molecular-weight diamine (2,2'-(ethylenedioxy)bis(ethylamine)) and a polyamine-based ionic liquid (triethylenetetramine trifluoroacetate, [TETA][Tfa]) in a solvent-free process. A mass fraction up to 80% PEG dimethyl ether (PEGDME, average $M_n \sim 250$) was added to the cross-linked matrix to enhance the gas transport properties. The cross-linking reaction mechanism, thermal stability of the resulting membranes, as well as water uptakes of the formed membranes were systematically investigated. The CO_2 , N_2 , and CO_4 gas transport properties of these new membranes were studied. Both CO_2/N_2 and CO_2/CH_4 binary mixed gas separation performances of the membranes at various humidity levels were tested. The gas permeation results showed that the free PEGDME additive acts as plasticizer in the polymeric matrix, resulting in excellent CO_2/N_2 and CO_2/CH_4 separation properties.

Key words

Poly(ethylene glycol); cross-linking; ionic liquids; CO₂ separation

Nomenclature

$$P$$
 Gas permeability (barrers, 1 barrer= 10^{-10} cm³ (STP) cm cm⁻² s⁻¹ cmHg⁻¹)
 D Gas diffusivity (cm³ (STP) /cm³ polymer cmHg)
 S Gas solubility (cm²/s)

^bDepartment of Chemical and Biological Engineering, UCB 424, University of Colorado, Boulder, CO 80309, USA

^{*}Corresponding author. deng@nt.ntnu.no

Download English Version:

https://daneshyari.com/en/article/4989083

Download Persian Version:

https://daneshyari.com/article/4989083

<u>Daneshyari.com</u>