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a b s t r a c t

Considering a simple model transport problem, we present a new finite element method. While the new
method fits in the class of discontinuous Galerkin (DG) methods, it differs from standard DG and stream-
line diffusion methods, in that it uses a space of discontinuous trial functions tailored for stability. The
new method, unlike the older approaches, yields optimal estimates for the primal variable in both the
element size h and polynomial degree p, and outperforms the standard upwind DG method.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

We introduce a new Petrov–Galerkin method for advective
problems. While it belongs in the class of discontinuous Galerkin
(DG) methods, unlike the standard upwind DG method, we are able
to prove optimal h and p error estimates in the L2-norm for our dis-
crete solution on general meshes (where, as usual, h is the mesh
size and p is the polynomial degree). The method includes a sepa-
rate outflux approximation on element interfaces and a space of
non-standard test functions designed for stability.

The boundary value problem that is the subject of this paper is
posed on a polyhedral domain X. Given f and g, we need to find a
finite element approximation to the solution u of

~b � ~ru ¼ f on X; ð1aÞ
u ¼ g on @inX: ð1bÞ

We only consider the case of constant ~b in this paper (but exten-
sions are possible, as mentioned in Section 5). The inflow boundary
@inX appearing in (1) is defined, letting ~n denote the unit outward
normal, by

@inX ¼ f~x 2 @X :~b �~nð~xÞ < 0g; ð2Þ

i.e., @inX denotes the global inflow boundary. While non-finite-ele-
ment numerical techniques can be designed for this problem (e.g.
the method of characteristics), we aim for finite elements because
of its versatility in handling complicated domains as well as certain
regular and singular perturbations of the above problem. A regular
perturbation of (1) is

~b � ~ruþ að~xÞu ¼ f : ð3Þ

A singular perturbation of (1) is obtained by the addition of a small
viscosity term with second derivatives. This is harder to analyze.
Within the domain of finite element methods for (1), there are
two broad categories (see [11] for a review). One is the very popular
streamline diffusion method [13] and its descendants. The other
category is composed of DG methods. Since our contribution fits
in the latter, we shall now review previous works in this category
in detail.

The well known first papers proposing and analyzing the origi-
nal DG method for (1) are [14,15,18]. To distinguish this method
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from our DG method, we will call the original DG method the ‘‘up-
wind DG method” and denote it by UDG, while we call ours the
‘‘discontinuous Petrov–Galerkin method” and denote it by DPG. It
is proved in [15] that if uh is the UDG approximation, then (for a
fixed p) it satisfies ku� uhkL2ðXÞ 6 Oðhs�1Þ for some s 6 pþ 1 dic-
tated by the regularity of the exact solution. This result was im-
proved by [14] wherein it was shown that the rate of
convergence is in fact Oðhs�1=2Þ. In both cases convergence with re-
spect to p was not studied. Even if we set aside the p-convergence
issue, notice that both the results are suboptimal in h, as the best
approximation error of the finite element space is OðhsÞ.

For some special classes of meshes however, many authors have
observed (and proved) the optimal rate of convergence of the UDG
method [8,19] with respect to h. Nonetheless, on general meshes,
the suboptimal rate of convergence cannot be improved, as shown
by a numerical example in [17] using a particular quasiuniform
mesh and a smooth exact solution. To express the sentiment of
many, we quote from [8] that ‘‘the mechanisms that induce the
loss of h1=2 in the order of convergence of the L2-norm of the error
are not very well known yet”.

An hp analysis of the UDG scheme was first provided in [3].
They considered the regular perturbation (3) under the assumption
that

0 < c0 6 að~xÞ 8~x 2 X: ð4Þ

Because of this assumption, they are able to control the L2ðXÞ-norm
of the solution. They also introduced a stabilization parameter into
the original upwind DG method. A few years later, the paper [12]
extended the results of [3] in several directions, providing a unified
theory for an hp version of the streamline diffusion method, as well
as the upwind DG method. Their analysis did not assume (4), rather
they let the advection vector ~b depend on ~x and assumed

0 < c0 6 �
1
2
r � bð~xÞ þ að~xÞ 8~x 2 X; ð5Þ

as a consequence of which they have stability in c0kukL2ðXÞ. (Note
that for the case we intend to study (1), the right hand side of (5)
evaluates to zero, so (5) does not hold.) Both papers analyzed the
stabilized version of the upwind DG method and both relied on
the proper choice of the stabilization parameter. While the results
of [12] are optimal in p, those of [3] are suboptimal in p. In all these
works, the L2ðXÞ-rate of convergence of the error with respect to h
remained suboptimal by h1=2. In contrast, our results do not exhibit
this suboptimality, nor do we add any stabilization parameter. We
believe our method is the first in the finite element (not just DG)
family of methods for the transport equation which has provably
optimal convergence rates on very general meshes.

The design of our method is guided by a generalization of Céa
Lemma due to Babuška [1,5]. We only need a simple version of
the result, which we now describe using the following notations
(all our spaces are over R). Let X; Xh � X, and Vh be Banach spaces
and let ahð�; �Þ be a bilinear form on X � Vh. Suppose the exact solu-
tion U 2 X satisfies and the discrete solution Uh 2 Xh satisfies

ahðU � Uh;vhÞ ¼ 0 for all vh 2 Vh: ð6Þ

If the bilinear form is continuous in the sense that there is a C1 > 0
such that

ahðw;vhÞ 6 C1kwkXkvhkVh
for all w 2 X; vh 2 Vh ð7Þ

and also the inf–sup condition, i.e., there is a C2 > 0 such that

C2kwhkX 6 sup
vh2Vh

ahðwh;vhÞ
kvhkVh

for all wh 2 Xh; ð8Þ

then, as is well known, the following theorem can be formulated:

Theorem 1.1. Under the above setting, we have the following error
estimate:

kU � UhkX 6 1þ C1

C2

� �
inf

wh2Xh

kU �whkX :

Proof. The argument is simple and standard:

kU � UhkX ¼ kU �whkX þ kwh � UhkX

6 kU �whkX þ
1
C2

sup
vh2Vh

ahðwh � Uh; vhÞ
kvhkVh

by ð8Þ;

6 kU �whkX þ
1
C2

sup
vh2Vh

ahðwh � U;vhÞ
kvhkVh

by ð6Þ;

6 kU �whkX þ
C1

C2
kwh � UkX by ð7Þ:

This finishes the proof. h

Many refinements and improvements of such a theorem are
known. But our purpose in going through the above simple argu-
ment is to clearly show that the test space need not have approx-
imation properties. Hence, in designing Petrov–Galerkin methods,
while we must choose trial spaces with good approximation proper-
ties, we may design test spaces solely to obtain good stability proper-
ties. This will be our guiding principle in designing our method. In
fact, the test spaces we propose shortly can have discontinuities in-
side the mesh elements.

Many researchers have put the above principle to good use. In
fact, even the abbreviation we use for our new method ‘‘DPG meth-
od”, has been previously used [4,6] for other methods. The theme in
these works is the search for stable test spaces using bubbles or other
polynomials. Our test space functions, in contrast, need not be poly-
nomial on an element, and indeed, need not even be continuous. We
are also not the first to consider such functions with discontinuities
within a finite element. Such elements are routinely used in X-FEM
and similar methods [2] for difficult simulations like crack propaga-
tion. However, we use discontinuities solely for stability purposes,
and solely in test spaces. Our trial spaces, being standard polynomial
spaces, possess provably good approximation properties.

Our method also introduces a new flux unknown on the ele-
ment interfaces. This is in line with the recent developments on
hybridized DG (HDG) methods [9]. HDG methods that extend the
ideas in [9] to the case of convection can be found in recent works
[10,16]. These methods are constructed by defining a independent
flux variable on the element interfaces which can solved for first,
after which the internal variables can be locally solved for. While
this can be thought of as akin to static condensation, additional
advantages can be exploited, such as easy stabilization [16] using
a penalty parameter. However, p-independent stability for such
methods has not been proved yet. While we borrow the idea of
letting the fluxes be independent variables in the design of our
method, our method does not have stabilization parameters, and
has p-independent stability.

We organize our presentation such that a spectral version of the
method is first exhibited (in Section 2). Details regarding the new
space of test functions and the stability estimates for the method
on a single element are presented in that section. Section 3 then
presents the composite method on a triangular mesh. Optimal L2

error estimates are proved in Theorem 3.2 there. We conclude in
Section 5 opining on important future directions. Proofs of a few
technical estimates are gathered in Appendix A.

2. The spectral method on one element

We start by considering the one-element case to fix the ideas
and study the element spaces. In other words, we let X be an
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