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A B S T R A C T

The mechanical strength of inorganic porous hollow fibers is a critical constraint that limits their wide scale
application. Various methods, including 3-point bending, 4-point bending, and diametrical compression are
used for the quantification of the mechanical strength. Here, we show that these methods cannot be used in an
interchangeable manner. For large sets of alumina hollow fibers, the parameters describing the cumulative
probability of failure functions depend on the type of measurement, i.e., 3 or 4-point, the span size, and the
measurement geometry. This implies that reporting data on mechanical properties of inorganic hollow fibers
requires that extensive information about the experimental details is provided, and that a direct quantitative
comparison between datasets is unjustifiable. The mechanical strength of the alumina hollow fibers tends to
follow a normal distribution, or log-normal distribution, instead of the often used Weibull distribution. Monte
Carlo simulations demonstrate that, especially at small sample set sizes, it is difficult to accurately determine the
shape of the probability distribution. However, detailed knowledge of the type and the shape of this distribution
function is essential when mechanical strength values are to be used in further design.

1. Introduction

Thin inorganic hollow fibers have large potential to be used as, for
example, microfiltration membranes, catalyst supports, and (mem-
brane) microreactors [1]. However, the widespread and large scale
application of inorganic fibers is hampered by, in particular, their
mechanical properties. Detailed knowledge of these properties is
required for an acceptable comparison between different fibers, and
quantification of the failure behavior of fibers is of key importance for
the design and construction of large area multi-fiber systems.

In ceramic reliability engineering, one often assumes a specific
probability distribution. Based on the microstructure of a ceramic —

being porous or non-porous— different probability distributions are
assumed. In traditional non-porous ceramics the Weibull distribution
is mostly used, whereas recently the use of the log-normal or normal
distributions are proposed for porous ceramics [2].

In addition to this, many methods are used to assess the mechanical
robustness of inorganic fibers; most commonly their flexural or
bending strength is determined via a 3-point [3–7] or 4-point bending
test [8–11]. Alternatives include burst pressure measurements [12,13]
or diametrical compression tests [14,15].

The reported mechanical strength is a direct result of the measure-
ment method and the conditions used. As a result, comparison of
strength data presented in literature can be deceptive. In addition to

the measurement method, the amount of samples measured and the
subsequent statistical analysis are of great importance.

The comparison of a 3-point versus a 4-point bending test is
described in literature for various applications, like advanced dense
ceramics [16–19] and polymers [20], but not for porous inorganic
hollow fibers. In this paper, we demonstrate the pronounced influence
of the measurement method on the reported strength value, and why it
is crucial to not only report the measurement method, but also sample
geometry and sample set size to allow comparison of reported strength
values.

2. Theoretical background

2.1. Strength distributions

The result of fracture testing is usually reported as an average
strength or mean strength of the measured stress at failure, of a set of N
samples.

σ
i Nσ

N
=

∑ = 1
i

i
(1)

A drawback of the average strength is that it contains no information
about the spread of the strength values measured. In ceramics, defects
are randomly distributed over the sample and they will vary in position,
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size, and severity. As a consequence, the strength of a fiber will vary
from fiber to fiber, even for apparent identical fibers. As a measure for
this spread often the standard deviation of the mechanical strength
data is reported. In addition, if a small amount of samples is measured,
the average strength might not be a good representation of the real
strength number (this effect becomes more severe at lower sample
sizes, e.g. N < 10 [21]). Therefore, the common interpretation of
fracture tests is based on a statistical models that predict a probability
of failure. It is often stated the one is required to measure at least 10–
30 samples if the statistical model is known [19,22], others propose
that a minimum of 150–200 samples is required for an unknown
model [21,23].

The distribution parameters are of utmost importance in the design
of components that consist of ceramics. In design, an acceptable
probability of failure is selected, and the associated design stress is
calculated using the statistical distribution function. Especially the
lower tail of the probability distribution strongly affects the design
stress [24]. Without appropriate characterization and the use of the
correct statistical distribution, the measured strengths cannot be
applied in design and might lead to erroneous conclusions. [2,25–27].

2.1.1. Weibull distribution
The Weibull distribution [28] is the generally applied distribution

for strength characterization of brittle ceramics with little defects. It is
based on the so-called weakest link principle. In the majority of dense
ceramics, only few defects are present. If the ceramic fails, it is assumed
to fail at its weakest defect. The regular formulation of the Weibull
distribution, used in measuring the strength of ceramics, is written as:
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where P σ( ) is the cumulative probability of failure, σ the applied stress,
m the Weibull modulus - a measure for the spread of strength data -
and σθ is the characteristic strength. The characteristic strength and
estimate of the Weibull modulus are often obtained via maximum
likelihood fitting of the measured strength data. The Weibull char-
acteristic strength depends on the test geometry, such type and size;
and it is a value specific to a certain test.

An alternative representation of the probability of failure is the
more general equation,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∫P σ V σ

σ
dV( , ) = 1 − exp −

V

m

0 (3)

where P σ V( , ) is the cumulative probability of failure, V is the volume
of the component, σ is the applied stress,m is the Weibull modulus and
σ0 is the Weibull material scale parameter. If the integration in the
above-mentioned equation is carried out the equation reduces to:
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where k is a dimensionless constant that accounts for test specimen
geometry and stress gradients. In general, k is also a function of the
estimated Weibull modulus. The product kV is often referred to as the
effective volume. Using this effective volume, the characteristic Weibull
strength σθ can be converted into the Weibull material scale parameter
using a relation such as

σ kV σ( ) = ( ) ( )V
m

θ V0
1/( )V (5)

This approach is discussed in detail in various references
[22,29,30]. Calculation of the effective volume of a porous ceramic
hollow fiber with its defects, pores, and macrovoids- is problematic as
the volume under stress is nearly impossible to estimate.

Mechanical strength testing combined with Weibull analysis are
broadly standardized for dense ceramics, for example in ASTM: C1161

[22] or DIN 843-5 [31]. Most methods recommend to measure at least
30 samples in order to accurately estimate the Weibull modulus and
characteristic strength. The Weibull distribution, depending on the
weakest link theory with non-interacting defects, is questioned to be
suitable for certain ceramic strength data [26,32–35]. For example
Danzer et al. [26] demonstrate that in certain situations a deviation of
the Weibull distribution is expected; when the material exhibits a
multi-model flaw size distribution (e.g., porosity), when defects inter-
act, when R-curve behavior is observed or when subcritical crack
growth is likely [36]. Inorganic porous hollow fibers prepared by non-
solvent induced phase inversion (NIPS) have a high defect density with
a large range of defects such as pores, large finger like voids and
agglomerates. This results in a questionable applicability of the Weibull
model and its underlying assumption. Therefore, other models are also
evaluated.

2.1.2. Normal distribution
The normal distribution is one of the mostly used distributions in

sciences for real-valued random variables whose distributions are not
known. Therefore, a normal distribution is used to describe the
strength of brittle ceramics, in particular when these materials show
a roughly symmetrical distribution and when the amount of defects is
large [33,37,38]. Its parameters σ and α represent the mean and
standard deviation of the distribution. The cumulative probability is
given by:
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2.1.3. Log-normal distribution
Lu et al. proposed the log-normal distribution for porous ceramics

with high porosity. This assumes that the probability of a flaw being
critical depends on a lot of factors such as size, shape and pore-grain
interaction [2,21]. The failure probability can be estimated by p p= ∏ i,
where pi is the failure probability of the i-th factor of influence. Via

p pln = ∑ ln i this results in an overall probability that follows the log-
normal distribution [39]. The cumulative probability of a log-normal
distribution is:
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If data is log-normally distributed with parameters σ and α, the
logarithm of the data is distributed with the mean σ σ α* = exp( + /2)2

and multiplicative standard deviation s σ α α* = exp(2 + )[exp( ) − 1]2 2 .
Analog to the additive transformation for the normal distribution
σ α± , the multiplicative transformation of the lognormal distribution
can be expressed as σ s*·/ *, where ”·/” indicates ”times or divided” by
[39].

2.2. Minimum information criterion

The unknown parameters of the proposed distribution functions are
obtained by maximum likelihood method. Eq. (8) shows the likelihood
of a probability density function, where σi is the strength of the i-th
sample, N is the total number of samples, is the likelihood, and f σ( )i
is the probability density function (pdf) of the proposed distribution
[33].

∑ f σln( ) = ln ( )
i

N

i
=1 (8)

To compare the proposed models, the Akaike information criterion
(AIC) [40] is used; which is an estimate for the distance between the
true and the estimated distribution, and is defined as:
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