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a b s t r a c t

Over the past years, model reduction techniques have become a necessary path for the reduction of com-
putational requirements in the numerical simulation of complex models. A family of a priori model reduc-
tion techniques, called Proper Generalized Decomposition (PGD) methods, are receiving a growing
interest. These methods rely on the a priori construction of separated variables representations of the
solution of models defined in tensor product spaces. They can be interpreted as generalizations of Proper
Orthogonal Decomposition (POD) for the a priori construction of such separated representations. In this
paper, we introduce and study different definitions of PGD for the solution of time-dependent partial dif-
ferential equations. We review classical definitions of PGD based on Galerkin or Minimal Residual formu-
lations and we propose and discuss several improvements for these classical definitions. We give an
interpretation of optimal decompositions as the solution of pseudo-eigenproblems. We also introduce
a new definition of PGD, called Minimax PGD, which can be interpreted as a Petrov–Galerkin model
reduction technique, where test and trial reduced basis functions are related by an adjoint problem. This
new definition improves convergence properties of separated representations with respect to a chosen
metric. It coincides with a classical POD for degenerate time-dependent partial differential equations.
For the numerical construction of each PGD, we propose algorithms inspired from the solution of eigen-
problems. Several numerical examples illustrate and compare the different definitions of PGD on tran-
sient advection–diffusion–reaction equations.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of physical models takes today an
important place in numerous branches of science and engineering.
Due to the increasing complexity of models, more and more re-
fined discretizations and robust numerical solution techniques
are needed in order to obtain reliable predictions of their re-
sponses. Furthermore, in the context of optimization, model iden-
tification, or parametric and stochastic analyses, the aim is not to
predict the response of a unique model but of a family of models.
In order to achieve these analyses, traditional solution techniques
require the optimal use of constantly evolving computational re-
sources. However, for many applications, innovative methodolo-
gies, alternative to the brute force approach, are obviously
necessary to access numerical predictions.

The concept of model reduction seems to be a path for solving
these computational issues. Model reduction methods exploit the
fact that the response of complex models (or of a family of models)
can often be approximated with a reasonable precision by the

response of a surrogate model, which is the projection of the initial
model on a low dimensional reduced basis. The dimension of re-
duced bases may be of several orders of magnitude lower than
the dimension of the classically used numerical models. Model
reduction methods distinguish themselves by the way of defining
and constructing the reduced bases of functions. Among these
methods, model reduction methods based on separation of vari-
ables are receiving a growing interest in various fields of scientific
computing. In the context of the solution of evolution problems, a
separated representation of the solution uðx; tÞ defined on a space–
time domain consists of a sum of products of scalar functions of the
time variable by functions of the space variable:

uðx; tÞ � umðx; tÞ ¼
Xm

i¼1

wiðxÞkiðtÞ: ð1Þ

When the solution u is known (or at least an approximation of it),
an optimal order m (or rank m) separated representation (1) — also
known as tensor product approximation or finite sums decomposi-
tion — can be classically defined as the one which minimizes the
distance to the solution with respect to a particular norm. This
separated representation is optimal in the sense that it minimizes
this distance for a given order m of decomposition. Under some
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assumptions on the chosen norm, this is the basic definition of the
classical Proper Orthogonal Decomposition (POD), also known as
Karhunen–Loève decomposition [18,26], Singular Value Decompo-
sition or Principal Component Analysis in other contexts. This
decomposition is classically used as an a posteriori model reduction
technique for long-time simulations or parametric analyses of evo-
lution problems [5,4,19,20,16,36,24,10,15,3].

In this paper, we focus on the more challenging problem of the a
priori construction of such separated representations. The aim is to
introduce different strategies for the construction of an approxi-
mate separated representation (1) of the solution, without a priori
knowing the solution nor an approximation of it. This requires to
adopt another definition of the separated representation and then
to propose dedicated algorithms for its construction. The different
methods introduced in this article can be interpreted as generaliza-
tions of the POD for the a priori construction of separated represen-
tations. The resulting decompositions have been recently called
Proper Generalized Decompositions (PGD).1 This type of methods
has been first introduced by Ladevèze in the context of the LATIN
method [21] (LArge Time INcrement method) for reducing compu-
tational costs (memory requirements and computational times)
associated with the solution of multiple linear evolution problems
resulting from a nonlinear iterative strategy which is global in
time. In this context, separated representation (1) was called ‘‘ra-
dial approximation”. In the literature, two variants of PGD have
been proposed for the progressive construction of (1), respectively
based on a Galerkin formulation [21,12,22,9] or a Minimal Residual
formulation [31,23] of the evolution problem. PGD methods have
also been introduced in other contexts: separation of physical vari-
ables and parameters (or random variables) in the context of
parametrized (or stochastic) PDEs [27,28,32,29],2 with a possible
additional separation of parameters [11,30],3 separation of coordi-
nate variables in multi-dimensional PDEs [6,1,2,8].4

In this paper, we introduce and study different definitions of
PGD for the solution of time-dependent partial differential equa-
tions. We review classical definitions of PGD based on Galerkin
or Minimal Residual formulations and we propose and discuss
several improvements for these classical definitions. We give an
interpretation of decompositions as the solution of pseudo-eigen-
problems and propose algorithms inspired from the solution of
eigenproblems for the construction of these decompositions. We
also introduce an innovative definition, called Minimax PGD,
which allows us to improve convergence properties of decomposi-
tion (1) with respect to a chosen metric. This new PGD can be
interpreted as an a priori Petrov–Galerkin model reduction tech-
nique, where test and trial reduced basis functions are related by
an adjoint problem involving the chosen metric. For degenerate
time-dependent partial differential equations, this new definition
coincides with a classical POD with respect to the chosen metric.

The outline of the paper is as follows: In Section 2, we introduce
an abstract weak formulation of a class of time-dependent partial
differential equations. In Section 3, we recall the principles of
model reduction methods with a particular focus on a posteriori
model reduction methods based on the POD. In Section 4, we focus
on PGD methods. We present classical progressive definitions of
these decompositions, based on Galerkin or minimal residual

formulations. We give an interpretation of these decompositions
as the solutions of pseudo-eigenproblems and we propose possible
improvements. In Section 5, we introduce and analyze a non-clas-
sical definition of PGD, called Minimax PGD. In Section 6, several
numerical examples illustrate the behavior of the Proper General-
ized Decomposition methods introduced in this article.

2. Time-dependent partial differential equation and
discretization

2.1. Model problem: advection–diffusion–reaction equation

As a problem model, we consider a transient advection–diffu-
sion–reaction equation defined on a spatial domain X � Rd and a
time interval I ¼ ð0; TÞ. The solution uðx; tÞ, with ðx; tÞ 2 X� I,
solves:
_u�r � ðlruÞ þ c � ruþ ru ¼ f on X� I; ð2aÞ
u ¼ 0 on @X� I; ð2bÞ
u ¼ u0 on X� f0g; ð2cÞ
where _u ¼ @u

@t , u0ðxÞ is the initial condition, f ðx; tÞ is a volumic source,
and lðx; tÞ; cðx; tÞ and rðx; tÞ are diffusion, advection and reaction
parameters which are eventually space and time-dependent.

2.2. Space weak formulation

We identify u with a function defined on I with values in Hilbert
space V ¼ H1

0ðXÞ, with uðtÞ : x 2 X#uðtÞðxÞ ’ uðx; tÞ. A weak formu-
lation of (2c) writes: find u : I! V such that

mð _uðtÞ; vÞ þ aðuðtÞ;v ; tÞ ¼ ‘ðv; tÞ 8v 2 V; ð3aÞ
uð0Þ ¼ u0; ð3bÞ
where mð�; �Þ and að�; �; tÞ are bilinear forms on V and where ‘ð�; tÞ is a
linear form on V, defined by:

mðu;vÞ ¼
Z

X
uv dx ¼ hu;viL2ðXÞ; ‘ðv ; tÞ ¼

Z
X

f ðtÞv dx; ð4Þ

aðu;v ; tÞ ¼
Z

X
lðtÞru � rv dxþ

Z
X

cðtÞ � ruv dxþ
Z

X
rðtÞuv dx: ð5Þ

2.3. Space–time weak formulation

A space–time weak formulation of (2c) is now introduced [25].
We introduce the following function space

L2ðI;VÞ ¼ fv : I ! V;

Z
I
kvðtÞk2

V dt < þ1g; ð6Þ

where k � kV is a norm on V. We denote T ¼ L2ðI; RÞ :¼ L2ðIÞ and
identify the space L2ðI;VÞ with the tensor product space V � T .
We denote by V0 ¼ H�1ðXÞ the dual space of V. A weak solution of
problem (3b) can then be defined by the following problem: find
u 2 V � T such that _u 2 L2ðI;V0Þ and5

Bðu;vÞ ¼ LðvÞ 8v 2 V � T ; ð7Þ

where B and L are bilinear and linear forms defined by

Bðu;vÞ ¼
Z

I
mð _uðtÞ;vðtÞÞdt þ

Z
I

aðuðtÞ;vðtÞ; tÞdt

þmðuð0þÞ;vð0þÞÞ; ð8Þ

LðvÞ ¼
Z

I
‘ðvðtÞ; tÞdt þmðu0; vð0þÞÞ ð9Þ

with vð0þÞ ¼ lims#0vðsÞ. The solution of problem (7) verifies the ini-
tial condition in a weak sense.

1 Roughly speaking, PGD methods introduce different definitions of the separated
representation (1) which require only the operator and right-hand side of the PDE,
and not the solution itself as in the definition of the POD. With dedicated algorithms,
it then allows to build the separated representation without knowing the solution a
priori.

2 uðx; t; nÞ �
Pm

i¼1wiðx; tÞkiðnÞ, with n the (random) parameters. In this context, PGD
has been named Generalized Spectral Decomposition as a generalization of spectral
decomposition of random processes.

3 uðx; t; nÞ ’ uðx; t; n1; . . . ; ndÞ �
Pm

i¼1wiðx; tÞk1
i ðn1Þ � � � kd

i ðndÞ.
4 uðx1; . . . ; xdÞ �

Pm
i¼1w1

i ðx1Þ � � �wd
i ðndÞ.

5 Let us note that _uðtÞ 2 V0 is assimilated with its Riesz representation in V in the
notation mð _uðtÞ;vðtÞÞ.

1604 A. Nouy / Comput. Methods Appl. Mech. Engrg. 199 (2010) 1603–1626



Download English Version:

https://daneshyari.com/en/article/498927

Download Persian Version:

https://daneshyari.com/article/498927

Daneshyari.com

https://daneshyari.com/en/article/498927
https://daneshyari.com/article/498927
https://daneshyari.com

