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a b s t r a c t

In this paper, we present a precise definition of the numerical dissipation for the orthogonal projection
version of the variational multiscale method for incompressible flows. We show that, only if the space
of subscales is taken orthogonal to the finite element space, this definition is physically reasonable as
the coarse and fine scales are properly separated. Then we compare the diffusion introduced by the
numerical discretization of the problem with the diffusion introduced by a large eddy simulation model.
Results for the flow around a surface-mounted obstacle problem show that numerical dissipation is of the
same order as the subgrid dissipation introduced by the Smagorinsky model. Finally, when transient sub-
scales are considered, the model is able to predict backscatter, something that is only possible when
dynamic LES closures are used. Numerical evidence supporting this point is also presented.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Variational multiscale (VMS) finite element methods for large
eddy simulation (LES) of turbulence are promising. First attempts
to apply the VMS idea to incompressible flow problems were made
in [17,18], where both small and large scales were solved and the
classical LES filters were applied only to the small scales. The idea
of simply using the algebraic approximation of the subscales, with-
out any additional ingredient (e.g. without physical-based subgrid
modeling), was introduced in [7] and elaborated in [5,19]. Very
good results were obtained for fully developed and transitional
turbulent flows. For a complete presentation in the context of iso-
geometric analysis, including results of homogeneous turbulence
and turbulent channel flow, we refer the reader to [2]. It is impor-
tant to note, however, that the algebraic approximation to the sub-
scales in [7,5,19] and in this work includes terms additional to
those appearing in the classical GLS/SUPG methods [5,9].

Many comments have been and are usually made on the impor-
tance of the numerical scheme when a LES of a turbulent flow is
performed. Chapter 7 of [26] is devoted to the numerical solution
of the LES equations and several results are mentioned. The influ-
ence of the numerical scheme and its interaction with classical LES
models was analyzed in [12], where truncation errors are com-
pared with the amplitude of the subgrid terms and found to be
dominant in many cases. The solution suggested in [12] is either
to increase the accuracy of the scheme or to use the ‘‘pre-filtering”
technique (to keep the filter size constant while the mesh size is

reduced until h-convergence is achieved). As mentioned in [26],
numerical experiments presented in [21] show that ‘‘the effect of
subgrid models is completely or partially masked by the numerical
error when second-order accurate methods are employed”. The use
of high order accurate schemes in order to minimize numerical dis-
sipation is not an uncommon advice. It is also quite common to de-
scribe a numerical method according to how dissipative it is.
However, precise measures of this property have not been pre-
sented up to date.

The first attempt to estimate numerical and subgrid dissipation
was made in [11], where several schemes for LES of compressible
flows are compared. The numerical dissipation is linked to the
leading terms of the truncation error and an intuitive definition
is presented. This definition is based on the difference between
the discrete convective term and that given by a reference centered
scheme of one order of accuracy higher. A scheme is considered
suitable for LES if either the numerical dissipation is much lower
than the subgrid one (condition C1) or the numerical dissipation
is able to mimic the subgrid one (condition C2). The general sad
conclusion is that neither condition C1 nor condition C2 are satis-
fied for the schemes analyzed.

Further analyses have been made in [10], where a method to
compute the effective numerical dissipation is developed based
on a finite difference approximation of the energy balance equa-
tion. The method is used to evaluate the dissipation in the context
of the monotonically integrated LES approach, first proposed in [3],
in which the Navier–Stokes equations are directly discretized
without introducing neither the filtering operation nor the SGS
stress tensor. The objective in [10] is to link the properties of the
numerical method with the physics of turbulence by comparing
numerical dissipation with the predictions of turbulence theory.
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A Galerkin least squares multiscale formulation of compressible
flows was presented in [23]. In this reference the original multi-
scale formulation of LES introduced in [17] is advocated and the
small scales are computed and filtered. The numerical dissipation
introduced by the least squares terms, obtained multiplying the
stabilization terms in the final algebraic system by the unknown,
is greater than the subgrid dissipation for the closures analyzed.
A similar approach is followed in [28] and the global conservation
of energy is used to define the numerical dissipation introduced by
the SUPG scheme (even the SUPG stress, an analog to the subgrid
stress, is defined). A dynamic Smagorinsky model is used and the
interaction with the dissipation introduced by the SUPG scheme
is analyzed. Results of channel flow simulations show the numer-
ical dissipation to be smaller than the physical one but still impor-
tant. These results are used to propose a correction to the physical
model to take into account the numerical scheme. The basic idea is
that, ideally, the numerical scheme should not affect the physical
model and therefore the proposal of [28] is to modify the physical
model reducing the dissipation it introduces by the same amount
the SUPG dissipation provides. This approach is opposed to that
advocated in [3] and in the present work.

The global energy balance of the finite element component is
also the starting point in [4] where the interior penalty method
is analyzed and the quality of the solution is evaluated in terms
of the numerical dissipation. In [13] it is shown that the numeri-
cal dissipation provided by the orthogonal subgrid scale method
of Codina [7] provides a rate of transfer of subgrid kinetic energy
proportional to the molecular physical dissipation rate (for an
appropriate choice of the stabilization parameter), thus preclud-
ing in principle the need of introducing an extra LES physical
model.

In this article we introduce a local definition of the numerical
dissipation for the variational multiscale method based on the local
version of the finite element energy balance. We also consider the
energy balance of the subgrid scale component, which permits us
to clearly identify the energy transfer mechanisms. In this frame-
work we show that only the orthogonal subgrid scale method of
Codina [7] permits a proper separation of scales, in the sense that
if a non-orthogonal projection is used, temporal derivatives couple
the energy balance for the coarse and fine scale components. When
the time dependent subscales of [9] are used, the model is capable
of predicting backscatter (energy transfer from small to coarse
scales).

The paper is organized as follows. In Section 2 the problem is
stated, and in Section 3 its two scale approximation introduced.
The core of the paper is presented in Section 4, where the energy
budget in a region is discussed. Section 5 presents the numerical
simulation of the flow over a surface mounted obstacle, where
the different dissipation mechanisms can be observed. Some final
conclusions close the paper in Section 6.

2. Problem statement

Let us consider the flow of an incompressible fluid in a domain
X � Rdðd ¼ 2;3Þ with boundary C ¼ oX during the time interval
½0; T�. Let u : Q ! Rd be the velocity field and p : Q ! R the pres-
sure, with Q ¼ X� ð0; TÞ. The incompressible Navier–Stokes equa-
tions for u and p can be written as

otuþ u � $uþ $p� mr2u ¼ f ; ð1Þ
$ � u ¼ 0; ð2Þ

where f is the vector of external forces and m is the kinematic viscos-
ity. Eqs. (1) and (2) must be supplemented with appropriate bound-
ary and initial conditions. For simplicity in the presentation, only
homogeneous Dirichlet boundary conditions will be considered.

We will also consider the LES problem that is found by applying
a filter of the form

�vðxÞ ¼
Z

vðx0ÞGðx; x0Þdx0;

to the Navier–Stokes Eqs. (1) and (2) for an appropriate filter func-
tion G. This operation results in an extra term: the divergence of the
subgrid stress tensor. The LES problem consists in finding the fil-
tered velocity field �u and the pressure field �p such that

ot �uþ �u � $�uþ $�p� mr2 �uþ $ � s ¼ f ; ð3Þ
$ � �u ¼ 0; ð4Þ

where s is the residual stress tensor defined in components by

sij ¼ uiuj � �ui �uj

Let k ¼ 1
2 u � u be the pointwise kinetic energy. A kinetic energy

conservation statement for the Navier–Stokes problem can be
found by multiplying (1) by the velocity u. Using (2) one obtains

otkþ u � $kþ u � $p� mr2kþ m$u : $u ¼ u � f :

This equation integrated over an arbitrary volume x � X and
simplified by the use of (2) gives

d
dt

Z
x

k|fflfflfflffl{zfflfflfflffl}
I

þ
Z

ox
n � u kþ pð Þ � m$k½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þ
Z

x
m$u : $u|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

III

¼
Z

x
u � f|fflfflfflffl{zfflfflfflffl}
IV

: ð5Þ

The total energy variation in volume x (term I) is balanced by
the flow of energy through its boundary (term II) plus the dissipa-
tion due to viscous effects (term III) and the work of external forces
(term IV).

For the LES problem the kinetic energy conservation of the fil-
tered velocity (�k ¼ 1

2
�u � �u) is found multiplying (3) by the filtered

velocity �u. In this case, the presence of the subgrid stresses gives
rise to a term that is responsible for an energy exchange between
large scales (represented by filtered variables) and small scales
(represented by subgrid variables), which are given by u0 ¼ u� �u
and p0 ¼ p� �p. The result reads

ot
�kþ �u �$�kþ �u �$�p�mr2�kþm$�u : $�uþ$ � �u �sð Þþ$�u : s¼ �u ��f :

This equation integrated over an arbitrary volume x and sim-
plified by the use of (4) gives

d
dt

Z
x

�k|fflfflfflffl{zfflfflfflffl}
I

þ
Z

ox
n � �u �kþ �p

� �
� m$�kþ �u � s

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þ
Z

x
m$�u : $�u|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

III

þ
Z

x
$�u : s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

V

¼
Z

x
�u � �f|fflfflfflffl{zfflfflfflffl}
IV

:

ð6Þ

The interpretation of the terms corresponds to the meaning
they had before, except for the new term V that represents the
transfer of energy between coarse and fine scales and for the last
term in II which now includes the flow of energy through the
boundary due to the work done by the mean velocity against
the residual stress tensor. Note that this term comes from the fil-
tering of the convective term and when the filter size tends to
zero the residual stresses vanish and we recover (5). It is also pos-
sible to obtain a transport equation (and its integral form) for the
subgrid kinetic energy k0 ¼ 1

2 u0 � u0 in which term V also appears
[26].

In the discussion below we will consider the standard Smago-
rinsky LES model, in which the subgrid closure is

s ¼ mt$s �u;
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