Author's Accepted Manuscript

Elemental composition of membrane foulant layers using EDS, XPS, and RBS

Alexander S. Gorzalski, Carrie Donley, Orlando Coronell

PII: S0376-7388(16)31433-8

DOI: http://dx.doi.org/10.1016/j.memsci.2016.08.055

Reference: MEMSCI14705

To appear in: Journal of Membrane Science

Received date: 28 November 2015

Revised date: 29 June 2016 Accepted date: 26 August 2016

Cite this article as: Alexander S. Gorzalski, Carrie Donley and Orlando Coronell Elemental composition of membrane foulant layers using EDS, XPS, and RBS *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2016.08.055

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Elemental composition of membrane foulant layers using EDS, XPS, and RBS

Alexander S. Gorzalski¹, Carrie Donley², Orlando Coronell^{1,*}

*Corresponding author [tel:+1-919-966-9010; fax:+1-919-966-7911; e-mail: coronell@unc.edu]

Abstract: Existing studies investigating the elemental composition of membrane foulant layers typically use one of the following analytical techniques: energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), or Rutherford backscattering spectrometry (RBS). However, given that EDS, XPS, and RBS have different capabilities, limitations, and depths of analysis, these techniques may provide differing results from each other. Thus, to understand the suitability of each technique for the analysis of membrane foulant layers, a thorough study is needed that compares EDS, XPS, and RBS results for a diverse set of fouled membranes. As such, the objectives of this study were to identify the strengths, weaknesses, and limitations of EDS, XPS and RBS in the characterization of the elemental composition of foulant layers, and evaluate whether the three techniques yield consistent and/or complementary results for sample composition and structure. We studied four diverse fouled membranes, each before and after cleaning, as well as the original unfouled membranes, and assessed the suitability of each technique for various applications, such as the detection of major elements in thick and thin layers, characterization of sample depth heterogeneity, evaluation of overall membrane cleaning efficacy, among others. Results show that in the analysis of membranes and foulant layers: (i) applying a single technique may lead to incomplete or incorrect conclusions about composition or structure; (ii) RBS is the most advantageous technique for elemental analysis; (iii) EDS has important limitations, but is appropriate for evaluating overall elemental composition of foulant

¹Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 2599, ²Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina, Chapel Hill, NC 27599

Download English Version:

https://daneshyari.com/en/article/4989352

Download Persian Version:

https://daneshyari.com/article/4989352

<u>Daneshyari.com</u>