Author's Accepted Manuscript

Aromatic Polyamides Containing Trityl Substituted Triphenylamine: Gas Transport Properties and Molecular Dynamics Simulations

Soumendu Bisoi, Arun Kumar Mandal, Venkat Padmanabhan, Susanta Banerjee

www.elsevier.com/locate/memsci

PII: S0376-7388(16)30358-1

DOI: http://dx.doi.org/10.1016/j.memsci.2016.09.007

Reference: MEMSCI14727

To appear in: Journal of Membrane Science

Received date: 12 May 2016 Revised date: 6 September 2016 Accepted date: 8 September 2016

Cite this article as: Soumendu Bisoi, Arun Kumar Mandal, Venkat Padmanabhar and Susanta Banerjee, Aromatic Polyamides Containing Trityl Substituted Triphenylamine: Gas Transport Properties and Molecular Dynamics Simulations *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2016.09.007

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Aromatic Polyamides Containing Trityl Substituted Triphenylamine: Gas

Transport Properties and Molecular Dynamics Simulations

Soumendu Bisoi^a, Arun Kumar Mandal^a, Venkat Padmanabhan^b, Susanta Banerjee^{a*}

^aMaterials Science Centre, ^bChemical Engineering Department, Indian Institute of

Technology, Kharagpur- 721302, India

Abstract: A series of fully aromatic polyamides (PAs) was prepared by the polycondensation

reaction of 4,4'-diamino-4-tritylaniline with four commercial diacids. The polymers were

well-characterized using different analytical tools and membranes were prepared from the

PAs using a solution cast method. The resulting PAs exhibited good mechanical properties,

with a tensile strength up to 74 MPa, thermal stability, and a high glass transition

temperature. The gas permeation properties of different gases through the PA membranes

were investigated using a constant-volume method. The incorporation of a trityl group into

the polymer backbone offers a successful approach to improve the gas permeability with

P_{CO2} and P_{O2} values as high as 141.0 and 33.4 Barrer, respectively. The PA membranes also

exhibited a reasonably high permselectivity for the separation of important gas pairs

CO₂/CH₄ and O₂/N₂. The effect of a trityl-substituted triphenylamine (TPA) and its spatial

arrangement and size-distribution function of the free-volume on gas transport properties

were calculated using molecular dynamics (MD) simulation. Gas diffusivity is supported by

individual penetrant molecule trajectories and mean-square displacements in a polymer

matrix. MD simulations were consistent with the experimental data.

Keywords: Polyamides; Trityl moiety; Gas transport properties; Molecular dynamics

simulation.

*corresponding Author: S. Banerjee (E-Mail: susanta@matsc.iitkgp.ernet.in)

*Tel.: +91-3222283972. Fax: +91-3222255303.

1

Download English Version:

https://daneshyari.com/en/article/4989356

Download Persian Version:

https://daneshyari.com/article/4989356

<u>Daneshyari.com</u>