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a b s t r a c t

An algebraic variational multiscale–multigrid method is proposed for large eddy simulation of turbulent
flow. Level-transfer operators from plain aggregation algebraic multigrid methods are employed for scale
separation. In contrast to earlier approaches based on geometric multigrid methods, this purely algebraic
strategy for scale separation obviates any coarse discretization besides the basic one. Operators based on
plain aggregation algebraic multigrid provide a projective scale separation, enabling an efficient imple-
mentation of the proposed method. The application of the algebraic variational multiscale–multigrid
method to turbulent flow in a channel produces results notably closer to reference (direct numerical sim-
ulation) results than other state-of-the-art methods both for mean streamwise and root-mean-square
velocities. For predicting highly sensitive components of the Reynolds-stress tensor in the context of tur-
bulent recirculating flow in a lid-driven cavity, the algebraic variational multiscale–multigrid method
also shows a remarkably good performance in predicting reference results from experiment and direct
numerical simulation compared to other methods.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the numerical simulation of turbulent flows, adequate com-
putational power to execute a direct numerical simulation (DNS,
see, e.g. [1]), which aims at numerically resolving all flow scales,
is usually not available. A promising alternative then is large eddy
simulation (LES). The strategy of LES consists of resolving the larger
flow structures and modeling the effect of the smaller flow struc-
tures on the larger structures, see, e.g. [2] for detailed descriptions.
It has been learned from Kolmogorov’s hypotheses [3] that the
smaller scales exhibit a more universal character than the larger
scales, which favors a more general validity of a once-developed
model for the smaller scales than for the larger scales. As a result,
LES appears to be a promising approach in two respects. On the one
hand, a coarser discretization, which is substantially coarser than a
comparable DNS discretization in the majority of the cases, is suf-
ficient for resolving the larger scales. On the other hand, the uni-

versal character of the smaller scales simplifies the modeling
process.

A new approach to LES based on the concept of the variational
multiscale method (VMM) was introduced in [4]. Two important
aspects characterize this approach. First, variational projection
separates scale ranges rather than spatial filtering as in a tradi-
tional LES. Second, the (direct) influence of the subgrid-scale mod-
el, which is introduced to represent the effect of the unresolved
scales on the resolved scales, is confined to the finer of the resolved
scales. Thus, the coarser scales are solved similar to a DNS (i.e.,
without any direct influence of the modeling term). Of course,
the coarse resolved scales are still indirectly influenced by the sub-
grid-scale model due to the inherent coupling of all scales. The
method was later reinterpreted in the form of a separation of the
problem scales into three scale groups in [5,6]. The three-scale sep-
aration accounts specifically for ‘‘large (or coarse) resolved scales”,
‘‘small (or fine) resolved scales”, and ‘‘unresolved (or subgrid)
scales”. Recently, this ‘‘Variational Multiscale LES (VMLES)”, as it
was called therein, was reviewed in [7]. The reader may also find
many references to applications of the VMLES to turbulent flow
problems to that date in that publication. Another, more general
recent review on LES addressing VMLES, among other things,
may be found in [8].

The VMM is a theoretical framework for the separation of scale
groups based on the variational formulation of a partial differential
equation, relying on a direct sum decomposition of the respective
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function spaces. In accordance with this theoretical procedure, it is
essential to develop practical implementations by incorporating
the VMM framework into a specific numerical method. For the
VMLES, the crucial aspect is the implementation of the separation
between coarse resolved scales and fine resolved scales. Basically,
as proposed in [7], it may be distinguished between ‘‘h-type” (or
grid-based) and ‘‘p-type” (or polynomial-based) scale separations.
One particular way of performing h-type scale separation is to
make use of procedures well-established in the context of multi-
grid solvers. Multigrid methods (see, e.g. [9–11]) are among the
most efficient iterative algorithms for solving linear systems asso-
ciated with partial differential equations. The basic idea is to damp
errors by utilizing multiple resolutions in an iterative scheme.
Oscillatory components are efficiently reduced via a simple
smoothing procedure, while smooth components are addressed
using an auxiliary lower-resolution version of the discretization
(coarse grid). The idea is recursively applied on the next coarser le-
vel. Two types of multigrid methods may be distinguished: geo-
metric multigrid (GMG) (see, e.g. [10,11] for elaboration) and
algebraic multigrid (AMG).

An initial study on employing GMG operators for VMLES was
provided in [12]. The goal of that study was the separation of re-
solved scales into coarser and finer ones in the context of a finite
volume method for LES of turbulent flows. A similar scale separa-
tion, inspired by a volume–agglomeration method as used in
[13], had been used before in [14], without addressing it from a
multigrid perspective, though. Without reference to VMLES, which
had not yet been established at that time, GMG approaches to LES
had already been proposed in [15] and later in [16], see also the re-
cent review [17]. In contrast to those earlier studies, we will focus
on AMG instead of GMG (or volume–agglomeration) methods in
the present work. Hence, a particular feature of the method pro-
posed in this study is the opportunity to apply modeling terms
either to all scale groups or only to selected scale groups, for in-
stance, only to the finer resolved scales of the problem, as required
by VMLES, in a purely algebraic way. This means that neither any
coarse discretization besides the basic one (in contrast to all afore-
mentioned GMG-based approaches) nor a challenging geometry-
oriented volume–agglomeration procedure (as in [14]) is required.

Regarding the implementation of algebraic multigrid tech-
niques, it may be distinguished between classical AMG, which is
sometimes also called ‘‘Ruge–Stüben-AMG” [18] as well as its
numerous variants and derived techniques, and (smoothed) aggre-
gation- or agglomeration-based AMG (SA-AMG) [19] and derived
methods. SA-AMG, as proposed in [19], has been proven to be an
optimal method for the solution of elliptic problems which result
in symmetric positive definite matrices at the end of the discretiza-
tion process. In this context, a notion of high-energy and low-en-
ergy modes usually replaces the concept of oscillatory and
smooth error components mentioned above. However, as soon as
hyperbolic terms come into play, resulting in non-symmetric ma-
trix systems, a comparable notion of energy does not exist any-
more, and as a consequence, the underlying theory of SA-AMG
does no longer hold, see also [20]. An option for such problems is
the use of Petrov–Galerkin SA-AMG, see [21,20] for basic consider-
ations and [22] for a recently developed method. Another alterna-
tive is plain aggregation AMG (PA-AMG). PA-AMG was, for
example, used for solving matrix systems arising from discretiza-
tions of the incompressible Navier–Stokes equations in [23]. How-
ever, a problem of PA-AMG in the context of solving matrix
problems related to such configurations is its sub-optimality when
the elliptic part plays a considerable role (e.g., in problems
with diffusion-dominated regions). Though conceptually different,
PA-AMG is closely related to volume–agglomeration multigrid
methods (see, e.g. [13,24,25]), which were preferably developed
for finite volume discretizations of hyperbolic problems.

In this study, we will mainly focus on PA-AMG by developing
scale-separating operators from the level-transfer operators and
incorporating them into our formulation. We will compare
numerical results obtained with the proposed method of the pres-
ent study to results obtained with another method recently
developed in the context of the VMM for LES. In [26], a new
Residual-Based VMM (RBVMM) was proposed, in which the first
of the aforementioned two aspects of VMLES was kept alive
(i.e., variational projection for separating scales). Instead of a sub-
grid-scale model in traditional form, though, an approximate ana-
lytical representation of the unresolved scales is used for
modeling purposes. The developers of the RBVMM were able to
strongly rely on the considerable experience already gained at
that time with stabilized finite element methods in fluid mechan-
ics. Localized approximations to Green’s function of the respective
equation(s) governing a flow problem are essential ingredients of
stabilized methods. The reader may find a general overview on
stabilized methods in [27]. In fact, the RBVMM may be considered
an advanced stabilized method, paying particular attention to the
non-linear convective term within the Navier–Stokes equations.
As an extension to that method, it was recently proposed in
[28] to further take into account the time dependency of the
approximate analytical representation of the unresolved scales.
This extension was applied to turbulent flow problems in [29],
but will not be considered in the present work.

The main contribution of the present work will be an algebraic
variational multiscale–multigrid formulation, which brings to-
gether VMLES and PA-AMG, two techniques originally proposed
in the aforementioned studies, to achieve an accurate and efficient
method for the numerical solution of turbulent flows in the sense
of LES. Measures for enhancing the efficiency of the method by
exploiting the projective property of PA-AMG-based scale-separat-
ing operators will be emphasized. According to this, the remainder
of the present article is organized as follows. In Section 2, we pres-
ent the VMLES for the particular case of a multigrid-based scale
separation, pointing out all required subgrid-scale modeling steps.
The algebraic variational multiscale–multigrid formulation based
on PA-AMG is presented in Section 3. The proposed formulation
is then tested for two turbulent flow examples, turbulent flow in
a channel and turbulent recirculating flow in a lid-driven cavity,
in Section 4. Finally, in Section 5, conclusions are drawn from this
study.

2. Variational multiscale large eddy simulation using multiple
grid levels

2.1. Variational formulation of the incompressible Navier–Stokes
equations

The incompressible Navier–Stokes equations in a bounded, con-
nected domain X are defined as follows: find a velocity field u and
a pressure field (divided by density) p such that

@u
@t
þr � ðu� uÞ � 2mr � eðuÞ þ rp ¼ f; ð1Þ

r � u ¼ 0 ð2Þ

for 0 < t 6 T and x 2X, where f denotes a given body force, m the
kinematic viscosity of the fluid, and eðuÞ ¼ 1

2 ðruþ ðruÞTÞ the
rate-of-deformation tensor. At t = 0, it is required that u(�, 0) = u0

for a prescribed divergence-free initial velocity field u0. At the
boundary C � (0,T] = oX � (0,T], Dirichlet and Neumann boundary
conditions are prescribed as

u ¼ g on CD � ð0; T�; ð3Þ
� pnþ 2meðuÞ � n ¼ h on CN � ð0; T�; ð4Þ
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