Accepted Manuscript

Novel Asphalt-based Carbon Adsorbents with super-high adsorption capacity and excellent selectivity for Separation for Light hydrocarbons

Wanwen Liang, Huiyu Xiao, Daofei Lv, Jing Xiao, Zhong Li

PII:	S1383-5866(17)31741-0
DOI:	http://dx.doi.org/10.1016/j.seppur.2017.08.052
Reference:	SEPPUR 13994
To appear in:	Separation and Purification Technology
Received Date:	1 June 2017
Revised Date:	16 August 2017
Accepted Date:	21 August 2017

Please cite this article as: W. Liang, H. Xiao, D. Lv, J. Xiao, Z. Li, Novel Asphalt-based Carbon Adsorbents with super-high adsorption capacity and excellent selectivity for Separation for Light hydrocarbons, *Separation and Purification Technology* (2017), doi: http://dx.doi.org/10.1016/j.seppur.2017.08.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Novel Asphalt-based Carbon Adsorbents with super-high adsorption

capacity and excellent selectivity for Separation for Light

hydrocarbons

Wanwen Liang¹, Huiyu Xiao¹, Daofei Lv¹, Jing Xiao^{1**}, Zhong Li^{1,2*}

1 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China

2 State Key Lab of Subtropical Building Science of China, South China University of Technology, Guangzhou 510640, PR China

ABSTRACT

Separation and recovery of light hydrocarbons (C2-C3) from gaseous mixtures (C_1-C_3) such as natural gas is of importance for the petroleum industry, and is profitable for natural gas producers if it can be done at normal temperature. In this work, novel asphalt–based activated carbons (A-ACs) were prepared by using asphalt as carbon source for separation of light hydrocarbons. The resultant A-ACs were characterized, and C_3H_8 , C_2H_6 and CH_4 adsorption isotherms of A-ACs were measured. Besides, their dynamic separation performance were investigated by fixed bed experiments. The resulting A-ACs exhibited a superior C_3H_8 and C_2H_6 adsorption capacity of 11.76 and 6.59 mmol/g at 298 K and 100 kPa, respectively and their BET surface area reached as high as 3131 m²/g; The IAST-predicted C_2H_6/CH_4 and

^{*} Corresponding author. Tel: +86 20 87110608 Fax: +86 20 87110608 E-mail: cezhli@scut.edu.cn (Z. Li).

^{**} Corresponding author Tel: +86 20 87113513 Fax: +86 20 87113513 E-mail: cejxiao@scut.edu.cn(J. Xiao);

Download English Version:

https://daneshyari.com/en/article/4989471

Download Persian Version:

https://daneshyari.com/article/4989471

Daneshyari.com