Accepted Manuscript

Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation

Maria E. Dmitrenko, Anastasia V. Penkova, Alexander B. Missyul, Anna I. Kuzminova, Denis A. Markelov, Sergey S. Ermakov, Denis Roizard

PII: S1383-5866(17)31150-4

DOI: http://dx.doi.org/10.1016/j.seppur.2017.06.061

Reference: SEPPUR 13839

To appear in: Separation and Purification Technology

Received Date: 11 April 2017 Revised Date: 22 June 2017 Accepted Date: 22 June 2017

Please cite this article as: M.E. Dmitrenko, A.V. Penkova, A.B. Missyul, A.I. Kuzminova, D.A. Markelov, S.S. Ermakov, D. Roizard, Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation, *Separation and Purification Technology* (2017), doi: http://dx.doi.org/10.1016/j.seppur.2017.06.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation

Maria E. Dmitrenko¹, Anastasia V. Penkova^{*,1}, Alexander B. Missyul², Anna I. Kuzminova¹, Denis A. Markelov^{1,3}, Sergey S. Ermakov¹, Denis Roizard⁴

¹Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, 198504 Saint Petersburg, Russia

²ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain

³St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia

⁴Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, 1 rue Granville, 54000 Nancy, France

*Corresponding author. E-mail: a.penkova@spbu.ru, tel.: +7(812)428-48-05

Author e-mails: Maria E. Dmitrenko, m.dmitrienko@spbu.ru; Alexander B. Missyul, amissiul@cells.es; Anna I. Kuzminova, ai.kuzminova@mail.ru; Denis A. Markelov, markeloved@gmail.com; Sergey S. Ermakov, s.ermakov@spbu.ru; Denis Roizard, denis.roizard@univ-lorraine.fr.

Abstract

This study focuses on the development of a green pervaporation (PV) process for dehydrating a wide range of commercially significant mixtures such as concentrated (and corrosive) acetic acid blends using mixed-matrix membranes based on polyvinyl alcohol (PVA) cross-linked by low-hydroxylated fullerenol ($C_{60}(OH)_{12}$). The effect of $C_{60}(OH)_{12}$ and various conditions of physical cross-linking on the structure and internal morphology of composite membranes was investigated by X-ray diffraction and scanning electron microscopy, and the stability and transport properties of the developed membranes were investigated for acetic acid dehydration at a wide range of feed water contents (5–30 wt.%) and temperatures (25–60 °C). The supported mixed-matrix

Download English Version:

https://daneshyari.com/en/article/4989574

Download Persian Version:

https://daneshyari.com/article/4989574

<u>Daneshyari.com</u>