Accepted Manuscript

Sorption, diffusion and pervaporation study of thiophene/n-heptane mixture through self-support PU/PEG blend membrane

Bahareh Baheri, Toraj Mohammadi

PII: S1383-5866(17)30569-5

DOI: http://dx.doi.org/10.1016/j.seppur.2017.05.026

Reference: SEPPUR 13739

To appear in: Separation and Purification Technology

Received Date: 21 February 2017 Revised Date: 10 May 2017 Accepted Date: 10 May 2017

Please cite this article as: B. Baheri, T. Mohammadi, Sorption, diffusion and pervaporation study of thiophene/n-heptane mixture through self-support PU/PEG blend membrane, *Separation and Purification Technology* (2017), doi: http://dx.doi.org/10.1016/j.seppur.2017.05.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sorption, diffusion and pervaporation study of thiophene/n-

heptane mixture through self-support PU/PEG blend membrane

Bahareh Baheri, Toraj Mohammadi*

Research and Technology Centre for Membrane Processes, Faculty of Chemical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

Tel: +98 21 77240496, Fax: +98 21 77240495

*Corresponding author: E-mail address: torajmohammadi@iust.ac.ir

Abstract

The novel polyurethane (PU)/polyethylene glycol (PEG) self-support blend membranes were prepared via solution casting method to investigate their gasoline desulfurization performance. Pervaporation (PV) method was employed to separate thiophene from model gasoline consisting of a binary mixture of thiophene and n-heptane. The membrane sorption (S) and diffusion (D) coefficients were obtained from the sorption test. Characteristics and morphological attributes of the membrane were studied using FTIR and SEM analysis. SEM images exhibited a fine heterogeneous blended phase with a defect-free surface. Blending intensified the properties of individual PU and PEG membranes bringing about satisfactory permeability and desulfurization performance. A normalized flux of 25.5 kg µm/m² h and an enrichment factor of 7.1 were obtained at 65 °C. The membranes were constructed and evaluated in self-support form, which indicates their mechanical and chemical strength when operated up to 120 hours. Both the blending method and the selection of the proper PU with appropriate blending ratio resulted in the fabrication of apposite membranes for separation of thiophene from n-heptane and also the development of a membrane material to be utilized in desulfurization industry.

Keywords: Pervaporation; Sorption, Diffusion; Blending; Desulfurization; Thiophene; nheptane.

Download English Version:

https://daneshyari.com/en/article/4989636

Download Persian Version:

https://daneshyari.com/article/4989636

<u>Daneshyari.com</u>