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In this paper we study the problem of estimating the possibly non-homogeneous material coefficients
inside a physical system, from transient excitations and measurements made in a few points on the
boundary. We assume there is available an adequate Finite Element (FEM) model of the system, whose
distributed physical parameters must be estimated from the experimental data.

We propose a space-time localization approach that gives a better conditioned estimation problem,
without the need of an expensive regularization. Some experimental results obtained on an elastic sys-
tem with random coefficients are given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Finite Element Method (FEM) [10] is a fundamental numer-
ical tool in modern engineering design. Often, the a-priori knowl-
edge about the system is by itself sufficient to determine the
values of the parameters in the FEM model. Nevertheless, there
is a growing number of applications in which it is convenient to
use a finite element model but there is only a partial knowledge
about the system to be modeled and it is necessary to do some sys-
tem identification from available collections of experimental data.
This happens e.g. in the simulation of crash-tests in the automotive
engineering [8], where the identification of the system is required
for those components (e.g. rubber couplings, solder joints) whose
behavior cannot be accurately predicted a-priori. After the identifi-
cation process, the simulation tool becomes more reliable at repro-
ducing virtual experiments on the system. Here, we turn our
attention at applications in which the system identification is used
as a diagnostic tool, e.g. in non-destructive control or inspection of
mechanical and civil structures. In this case, the final result of the
computer application is not the numerical simulation, but the esti-
mate produced by the system identification process, in order to
verify the hypothesis about the system integrity or to point out
the presence of internal anomalies in the material. In these
settings, we assume to know the properties of the material at the
surface of the system from physical measurements. Then, we want
to estimate the coefficients of the material inside the system,
through the propagation sensing of, artificially induced, small
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elastic vibrations or acoustic waves or thermal heatings, to say a
few. This is clearly an inverse problem. In particular, let us consider
the situation in which only a small portion of the boundary can be
instrumented and, consequently, relatively a few measurement
points (sensors) are available. In general, the number and the posi-
tion of the sensors are fundamental topics to have sufficient infor-
mation available and a consequent well-conditioned parameter
estimation problem, that must be solved numerically. A problem
close to the one here considered it is often called in the literature
the inverse scattering problem [12] and seismic inversion is one of
the most studied applications. Several algorithms have been pro-
posed in the literature, e.g. travel-time [22], layer-stripping [23],
migration [5]. They follow a signal-based approach, i.e. that the
estimation of the material properties inside the system is per-
formed by monitoring the presence and the properties of backward
waves (scattered waves) produced by the presence of interfaces
between different materials (e.g. inclusions) inside the system.

In this paper we follow a model-based approach, that compares
the predictions of the simulation model with the corresponding
data coming from the sensors. It does not require to take into ac-
count explicitly any scattering paradigm. Actually, here the estima-
tion process starts in the early forward propagation path of the
probing signal. The finite element model becomes, in this context,
a fundamental mathematical support to the estimation algorithm:
it defines precisely the class of distributed parameter models in
which to find the model that better describes the experimental
data. Moreover, its parametrization takes explicitly into account
the physical laws of continuum mechanics. In this way, the identi-
fied model is not only a good reproducer of the experimental data,
but its coefficients have physical meaning and their values can be
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used to make a physical interpretation of the measured response of
the system. To estimate the parameters of a time-dependent FEM
model from sampled data, it is convenient to express it in the form
of a discrete-time (linear) dynamical system and to use it as the
reference model in a Kalman filter/predictor (see e.g. [9,19]). The
Prediction Error Method (PEM) [13,16] is often used in the system
identification practice. It computes the values of the model param-
eters which minimize a quadratic cost functional of the prediction
error, produced e.g. by the Kalman filter, that depends nonlinearly
from the model parameters. An alternative approach is that of
using the Extended Kalman Filter (EKF) to estimate the model
parameters directly as state-variables of the extended filter [4,6].
Another approach is to use the so-called subspace methods (see
e.g. [14] for a recent survey), in which the state is determined first
by projection, with techniques based on the Singular Value Decom-
position (SVD), and then the model parameters are estimated with
a least squares technique. Here we have chosen the PEM approach
because it is more suited to estimate physical parameters, which
enter nonlinearly in the system matrices. In this paper we will
show that, in case of models with distributed parameters, it is pref-
erable to estimate sequentially the parameters in small subregions,
instead of performing a global estimate. For this purpose, we pres-
ent a space-time localized PEM method.

The paper is organized as follows. In Section 2 it is presented the
continuous model problem and its discretization. Section 3 pre-
sents the parameter estimation issues and the proposed algorithm
(see also Appendix A). In Section 4 are shown some numerical
experiments.

2. Model problem

Let us consider the well-known wave equation that, in a one-,
two- and three-dimensional domain, describes e.g. the vertical
oscillations of a string, of a membrane or the propagation of an
acoustic wave within a solid. In particular, we will consider a 1D
model with randomly varying material coefficients:
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where d = d(x, t) is the instant displacement at the time ¢ of a mate-
rial point initially located at the coordinate x € Q c R, q=
1,2,3,f =f(x,t) is the forcing term (an external force), p(x) is the
material density and k(x) is the material stiffness. Moreover, we
suppose to have: forcing terms which are localized in a small region
Qs of the space domain; an a-priori knowledge (e.g. by direct exper-
imental measurement) about the values of the material coefficients
in Q; sensors located in positions that are close to €. The problem
here considered is to estimate the material coefficients outside Qf
by means of experimental data given by the sensors. It represents
typical situations arising e.g. in non-destructive testing or in soil
exploration. From the point of view of system identification, this
is a situation in which it is not possible to choose the number and
the location of the sensors, an issue that usually would improve
the conditioning of the parameter estimation problem, see e.g. [8].

Let us apply the Finite Element Method (see e.g. [10]) to discret-
ize in space our model problem. As is well-known, we obtain the
following system of ordinary differential equations:

Mdj(£) + Kd(t) = fu(t), (2)

where M and K are called, respectively, the mass and stiffness
matrices. The vector f;(t) is the discretized forcing term. Let it be
ny and ey, respectively, the mesh nodes and elements contained in
the region €. For simplicity, and with great generality, we assume
that the material coefficients p(x) and k(x) are randomly set in all Q
and can be well approximated by a piecewise constant function de-

fined on the finite element mesh. Moreover, since in our model
problem they are known only in the elements e; and unknown in
the other ones, we assume that the values of the material coeffi-
cients in the elements outside @ are the unknown model parame-
ters, that we represent with the vector 6. Therefore, the spatial
resolution of the parameter estimates depends on the local size of
the finite element mesh. The optimal parametrization can be conve-
niently built using an adaptive finite element discretization [15,3,1].
Moreover, in our settings the parameters of the model are the phys-
ical coefficients of the material. In this way, the value of the esti-
mated parameters turns out to be independent of the geometric
shape of the elements and therefore the use of a dynamic mesh,
in particular an adaptive mesh [21], do not introduce perturbations
to the convergence of the estimates.

Let us define a state vector x(t) = { h(t)} and an input vector
u(t) = fu(t), to obtain: dn(t)

-1 -1
X(t) = Ax(t) + Bu(t), A= {(I) *MO 'K} B= {Mo ] (3)

Various methods may be used to discretize (3) in time (see e.g.
[10,20]). For example, if we apply the implicit Euler scheme we ob-
tain the following recurrent formula (7 is the time-step, and n is the
discrete-time index of the instant t, = nt):

(I = TA)Xn11 = Xn + TBUpq. (4)

Now, let us assume that the measurement vector y, = y(t;) is a lin-
ear combination of the state variables and consider two additive
stochastic vector processes {v,} (model noise) and {w,} (measure-
ment noise), which we assume zero-mean and uncorrelated. We ob-
tain a discrete-time, state-space, linear, stochastic dynamical
system:

Xni1 = AXy + Buy, + vy, ()
Yo = Cxp + Duy, + wy,. (6)

The model and measurement noise vectors are characterized by
their covariance matrices, respectively Q and R. The covariance
matrix Q must be tuned to describe the “statistical power” of the
modeling approximation error, while the covariance R of the mea-
surement noise can be deduced from the precision of the measure-
ment devices. To the model (5) and (6) it is now possible to apply
the discrete-time Kalman filter [9,19]. It produces an optimal pre-
diction of the outputs y,y = CXy»—1 having observed the experimen-
tal data y, 1, i.e. up to the time n— 1, and having consequently
predicted the state vector X,,_1, where the index “njn — 1” means
“at time n given the state (estimate) at time n — 1”. The index 6
means that y,, is obtained from a reference model with parameter
values 0, which are different, in general, from the true ones. The pre-
diction error has the following expression:

€no :yn _j’n,0~ (7)

If (5) and (6) is a good model of the system, there is no systematic
modeling error and with a well-tuned filter the prediction error has
no deterministic components, i.e. it is white noise.

3. Model parameters estimation

In this paper, we suppose that the measurement errors are sen-
sibly smaller than the estimation errors. In fact, in our case the esti-
mation of the state x, is performed with a reference model whose
parameters are only partially known, i.e. there is in general a rela-
tively high level of modeling error.
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