Accepted Manuscript

Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor

Ahmed Abdel-Karim, Tarek A. Gad-Allah, Amer S. El-Kalliny, Sayed I.A. Ahmed, Eglal R. Souaya, Mohamed I. Badawy, Mathias Ulbricht

PII: S1383-5866(16)31517-9

DOI: http://dx.doi.org/10.1016/j.seppur.2016.10.060

Reference: SEPPUR 13332

To appear in: Separation and Purification Technology

Received Date: 25 August 2016 Revised Date: 25 October 2016 Accepted Date: 25 October 2016

Please cite this article as: A. Abdel-Karim, T.A. Gad-Allah, A.S. El-Kalliny, S.I.A. Ahmed, E.R. Souaya, M.I. Badawy, M. Ulbricht, Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor, *Separation and Purification Technology* (2016), doi: http://dx.doi.org/10.1016/j.seppur. 2016.10.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor

Ahmed Abdel-Karim¹, Tarek A. Gad-Allah¹, Amer S. El-Kalliny^{1*}, Sayed I.A. Ahmed², Eglal R. Souaya³, Mohamed I. Badawy¹, Mathias Ulbricht⁴

Abstract

Polyethersulfone (PES) flat sheet membranes were fabricated using different additives, i.e. polyvinylpyrrolidone (PVP), linear Pluronic 31R1, and star-like Tetronic 904, with different contents, by nonsolvent-induced phase separation method at similar preparation conditions. Their effects on characteristics and performance of the flat sheet PES membranes were investigated in order to select the best membrane to be applied in submerged membrane bioreactor (SMBR). The characteristics of the fabricated membranes were investigated by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), mechanical stability measurements, contact angle (CA) measurement, shrinkage measurement, and membrane porosity analysis. The membranes performance was examined by investigation of pure water permeability (PWP) and bovine serum albumin (BSA) rejection analyses. The characteristics and the performance of the neat PES membrane have been improved by the action of these

E-mail address: kalliny78@hotmail.com

¹ Department of Water Pollution Research, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza Egypt-P. O. 12622.

² Sanitary Engineering Department, Faculty of Engineering, Ain Shams University, Abbassia, Cairo, Egypt

³ Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt

⁴ Lehrstuhl für Technische Chemie II and Centre for Water and Environmental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany

^{*}Corresponding author: Tel: +201012431344; fax: +20233370931

Download English Version:

https://daneshyari.com/en/article/4989959

Download Persian Version:

https://daneshyari.com/article/4989959

<u>Daneshyari.com</u>