Accepted Manuscript

Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe⁰ for wastewater treatment

Xiang Li, Minghua Zhou, Yuwei Pan, Liting Xu, Zhuoxuan Tang

PII: S1383-5866(16)30613-X

DOI: http://dx.doi.org/10.1016/j.seppur.2016.12.050

Reference: SEPPUR 13474

To appear in: Separation and Purification Technology

Received Date: 2 June 2016

Revised Date: 20 December 2016 Accepted Date: 21 December 2016

Please cite this article as: X. Li, M. Zhou, Y. Pan, L. Xu, Z. Tang, Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe⁰ for wastewater treatment, *Separation and Purification Technology* (2017), doi: http://dx.doi.org/10.1016/j.seppur.2016.12.050

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe⁰ for wastewater treatment

Xiang Li, a,b Minghua Zhou, *,a,b Yuwei Pan, a,b Liting Xu, a,b Zhuoxuan Tang a,b

^a MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of

Environmental Science and Engineering, Nankai University, Tianjin 300350, China

^b Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control,

College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

ABSTRACT: Advanced oxidation processes (AOPs) has great potential for wastewater treatment,

bust still limited in application due to their high cost for extensive reagent and energy demand,

and restricted working conditions (e.g. narrow pH range). Here, AOPs based on pre-magnetization

Fe⁰ (Pre-Fe⁰) were found to be highly efficient at wider pH conditions, partly solved the above

problems. After pre-magnetization, Fe⁰ was supposed to be easier to be corroded, which

remarkably improved processes (e.g., Pre-Fe⁰/H₂O₂, Pre-Fe⁰/K₂S₂O₈) efficiency several to >100

folds and valid for many refractory contaminants (e.g. dyes, phenols, organic acids), compared

with that conventional processes without pre-magnetization. Moreover, the process efficiency

could be sustained by the recovery of magnetism of Pre-Fe⁰. Thus AOPs based on pre-Fe⁰ is more

promising to take place of conventional Fe⁰ based AOPs since it more efficient but does not

require any change of the present water and wastewater treatment process, and does not need an

extra energy source, costly materials, and complex equipment.

Keywords: AOPs; pre-magnetization Fe⁰; remarkable improvement; refractory contaminants

* Corresponding author.

E-mail address: zhoumh@nankai.edu.cn (M. Zhou).

_

Download English Version:

https://daneshyari.com/en/article/4990022

Download Persian Version:

https://daneshyari.com/article/4990022

<u>Daneshyari.com</u>